We analyze a system of two interacting spin-qubits subjected to a Landau-Majorana-Stückelberg-Zener (LMSZ) ramp. We prove that LMSZ transitions of the two spin qubits are possible without an external transverse static field since its role is played by the coupling between the spin qubits. We show how such a physical effect could be exploited to estimate the strength of the interaction between the two spin qubits and to generate entangled states of the system by appropriately setting the slope of the ramp. Moreover, the study of effects of the coupling parameters on the time behavior of the entanglement is reported. Finally, our symmetry-based approach allows us to discuss also effects stemming from the presence of a classical noise or non-Hermitian dephasing terms.
Grimaudo R., Vitanov N.V., Messina A. (2019). Coupling-assisted Landau-Majorana-Stückelberg-Zener transition in a system of two interacting spin qubits. PHYSICAL REVIEW. B, 99(17), 174416-1-174416-8 [10.1103/PhysRevB.99.174416].
Coupling-assisted Landau-Majorana-Stückelberg-Zener transition in a system of two interacting spin qubits
Grimaudo R.;Messina A.
2019-01-01
Abstract
We analyze a system of two interacting spin-qubits subjected to a Landau-Majorana-Stückelberg-Zener (LMSZ) ramp. We prove that LMSZ transitions of the two spin qubits are possible without an external transverse static field since its role is played by the coupling between the spin qubits. We show how such a physical effect could be exploited to estimate the strength of the interaction between the two spin qubits and to generate entangled states of the system by appropriately setting the slope of the ramp. Moreover, the study of effects of the coupling parameters on the time behavior of the entanglement is reported. Finally, our symmetry-based approach allows us to discuss also effects stemming from the presence of a classical noise or non-Hermitian dephasing terms.File | Dimensione | Formato | |
---|---|---|---|
PhysRevB.99.174416.pdf
Solo gestori archvio
Tipologia:
Versione Editoriale
Dimensione
561.8 kB
Formato
Adobe PDF
|
561.8 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
copyright.pdf
Solo gestori archvio
Tipologia:
Contratto con l'editore (ATTENZIONE: NON TRASFERIRE A SITO DOCENTE)
Dimensione
90.59 kB
Formato
Adobe PDF
|
90.59 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.