We predict bond betas conditioning on a number of macro-finance variables. We explore differences across long-term government bonds, investment grade corporate bonds, and high yield corporate bonds. We conduct out-of-sample forecasting using the new approach of combining predictor variables through complete subset regressions (CSR). We consider the robustness of CSR forecasts across the 1-month, 3-month, and 12-month forecasting horizons. The CSR method performs well in predicting bond betas.
Aslanidis, N., Christiansen, C., Cipollini, A. (2019). Predicting bond betas using macro-finance variables. FINANCE RESEARCH LETTERS, 29, 193-199 [10.1016/j.frl.2018.07.007].
Predicting bond betas using macro-finance variables
Cipollini, Andrea
2019-01-01
Abstract
We predict bond betas conditioning on a number of macro-finance variables. We explore differences across long-term government bonds, investment grade corporate bonds, and high yield corporate bonds. We conduct out-of-sample forecasting using the new approach of combining predictor variables through complete subset regressions (CSR). We consider the robustness of CSR forecasts across the 1-month, 3-month, and 12-month forecasting horizons. The CSR method performs well in predicting bond betas.File | Dimensione | Formato | |
---|---|---|---|
Predicting bond betas using macro-finance variables.pdf
Solo gestori archvio
Descrizione: Articolo principale
Tipologia:
Versione Editoriale
Dimensione
249.89 kB
Formato
Adobe PDF
|
249.89 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.