Tubulins and microtubules (MTs) represent targets for taxane-based chemotherapy. To date, several lines of evidence suggest that effectiveness of compounds binding tubulin often relies on different post-translational modifications on tubulins. Among them, methylation was recently associated to drug resistance mechanisms impairing taxanes binding. The sea urchin is recognized as a research model in several fields including fertilization, embryo development and toxicology. To date, some α- and β-tubulin genes have been identified in P. lividus, while no data are available in echinoderms for arginine methyl transferases (PRMT). To evaluate the exploiting of the sea urchin embryo in the field of antiproliferative drug development, we carried out a survey of the expressed α- and β-tubulin gene sets, together with a comprehensive analysis of the PRMT gene family and of the methylable arginine residues in P. lividus tubulins. Because of their specificities, the sea urchin embryo may represent an interesting tool for dissecting mechanisms of tubulin targeting drug action. Therefore, results herein reported provide evidences supporting the P. lividus embryo as animal system for testing antiproliferative drugs.

Ragusa, M.A., Nicosia, A., Costa, S., Casano, C., Gianguzza, F. (2019). A survey on tubulin and arginine methyltransferase families sheds light on p. lividus embryo as model system for antiproliferative drug development. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 20(9), 1-26 [10.3390/ijms20092136].

A survey on tubulin and arginine methyltransferase families sheds light on p. lividus embryo as model system for antiproliferative drug development

Ragusa, Maria Antonietta
;
Costa, Salvatore;Casano, Caterina;Gianguzza, Fabrizio
2019-01-01

Abstract

Tubulins and microtubules (MTs) represent targets for taxane-based chemotherapy. To date, several lines of evidence suggest that effectiveness of compounds binding tubulin often relies on different post-translational modifications on tubulins. Among them, methylation was recently associated to drug resistance mechanisms impairing taxanes binding. The sea urchin is recognized as a research model in several fields including fertilization, embryo development and toxicology. To date, some α- and β-tubulin genes have been identified in P. lividus, while no data are available in echinoderms for arginine methyl transferases (PRMT). To evaluate the exploiting of the sea urchin embryo in the field of antiproliferative drug development, we carried out a survey of the expressed α- and β-tubulin gene sets, together with a comprehensive analysis of the PRMT gene family and of the methylable arginine residues in P. lividus tubulins. Because of their specificities, the sea urchin embryo may represent an interesting tool for dissecting mechanisms of tubulin targeting drug action. Therefore, results herein reported provide evidences supporting the P. lividus embryo as animal system for testing antiproliferative drugs.
2019
Ragusa, M.A., Nicosia, A., Costa, S., Casano, C., Gianguzza, F. (2019). A survey on tubulin and arginine methyltransferase families sheds light on p. lividus embryo as model system for antiproliferative drug development. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 20(9), 1-26 [10.3390/ijms20092136].
File in questo prodotto:
File Dimensione Formato  
ijms-20-02136 PRMT and tubulins 2019.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Versione Editoriale
Dimensione 4.14 MB
Formato Adobe PDF
4.14 MB Adobe PDF Visualizza/Apri
ijms-20-02136-s001 PRMT and Tubulins.zip

accesso aperto

Descrizione: Supplementary material
Tipologia: Versione Editoriale
Dimensione 1.52 MB
Formato Zip File
1.52 MB Zip File Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/358148
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 6
social impact