We have recently shown that pseudo-bosonic operators realize concrete examples of finite dimensional nilpotent Lie algebras over the complex field. It has been the first time that such operators were analyzed in terms of nilpotent Lie algebras (under prescribed conditions of physical character). On the other hand, the general classification of a finite dimensional nilpotent Lie algebra l may be given via the size of its Schur multiplier involving the so-called corank t(l) of l. We represent l by pseudo-bosonic ladder operators for t(l)≤6 and this allows us to represent l when its dimension is ≤5.

Bagarello, F., Russo, F.G. (2019). On the presence of families of pseudo-bosons in nilpotent Lie algebras of arbitrary corank. JOURNAL OF GEOMETRY AND PHYSICS, 137, 124-131 [10.1016/j.geomphys.2018.11.009].

On the presence of families of pseudo-bosons in nilpotent Lie algebras of arbitrary corank

Bagarello, Fabio
;
2019-01-01

Abstract

We have recently shown that pseudo-bosonic operators realize concrete examples of finite dimensional nilpotent Lie algebras over the complex field. It has been the first time that such operators were analyzed in terms of nilpotent Lie algebras (under prescribed conditions of physical character). On the other hand, the general classification of a finite dimensional nilpotent Lie algebra l may be given via the size of its Schur multiplier involving the so-called corank t(l) of l. We represent l by pseudo-bosonic ladder operators for t(l)≤6 and this allows us to represent l when its dimension is ≤5.
2019
Bagarello, F., Russo, F.G. (2019). On the presence of families of pseudo-bosons in nilpotent Lie algebras of arbitrary corank. JOURNAL OF GEOMETRY AND PHYSICS, 137, 124-131 [10.1016/j.geomphys.2018.11.009].
File in questo prodotto:
File Dimensione Formato  
BagRus[06-Dec-2018].pdf

accesso aperto

Descrizione: Preprint dell'articolo
Dimensione 267.02 kB
Formato Adobe PDF
267.02 kB Adobe PDF Visualizza/Apri
On_the_presence.pdf

Solo gestori archvio

Descrizione: articolo pubblicato
Dimensione 5.37 MB
Formato Adobe PDF
5.37 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/356739
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact