Heart rate variability (HRV; variability of the RR interval of the electrocardiogram) results from the activity of several coexisting control mechanisms, which involve the influence of respiration (RESP) and systolic blood pressure (SBP) oscillations operating across multiple temporal scales and changing in different physiological states. In this study, multiscale information decomposition is used to dissect the physiological mechanisms related to the genesis of HRV in 78 young volunteers monitored at rest and during postural and mental stress evoked by head-up tilt (HUT) and mental arithmetics (MA)
Krohova, J., Faes, L., Czippelova, B., Turianikova, Z., Mazgutova, N., Pernice, R., et al. (2019). Multiscale Information Decomposition Dissects Control Mechanisms of Heart Rate Variability at Rest and During Physiological Stress. ENTROPY, 21(5) [10.3390/e21050526].
Multiscale Information Decomposition Dissects Control Mechanisms of Heart Rate Variability at Rest and During Physiological Stress
Faes, Luca;Pernice, Riccardo;Busacca, Alessandro;
2019-01-01
Abstract
Heart rate variability (HRV; variability of the RR interval of the electrocardiogram) results from the activity of several coexisting control mechanisms, which involve the influence of respiration (RESP) and systolic blood pressure (SBP) oscillations operating across multiple temporal scales and changing in different physiological states. In this study, multiscale information decomposition is used to dissect the physiological mechanisms related to the genesis of HRV in 78 young volunteers monitored at rest and during postural and mental stress evoked by head-up tilt (HUT) and mental arithmetics (MA)File | Dimensione | Formato | |
---|---|---|---|
99-Krohova_Entropy-2019.pdf
accesso aperto
Descrizione: pdf
Tipologia:
Versione Editoriale
Dimensione
1.37 MB
Formato
Adobe PDF
|
1.37 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.