This paper presents the estimation of the wave energy potential around the Aegadian islands (Italy), carried out on the basis of high resolution wave hindcast. This reanalysis was developed employing Weather Research and Forecast (WRF) and WAVEWATCH IIImodels for the modelling of the atmosphere and the waves, respectively. Wave climate has been determined using the above-mentioned 32-year dataset covering the years from 1979 to 2010. To improve the information about wave characteristics regarding spatial details, i.e., increasing wave model resolution, especially in the nearshore region around the islands, a SWAN (Simulating WAves Nearshore) wave propagation model was used. Results obtained through the development of the nearshore analysis detected four energetic hotspots close to the coast of the islands. Near Marettimo island, only one hotspot was detected with a maximum wave energy flux of 9 kW/m, whereas, around Favignana, three hotspots were identified with a maximum wave energy flux of 6.5 kW/m. Such values of available wave energy resource are promising to develop different projects for wave energy converters in specific areas along the coast, in order to improve the energetic independence of Aegadian islands.

Re, C., Manno, G., Ciraolo, G., Besio, G. (2019). Wave Energy Assessment around the Aegadian Islands (Sicily). ENERGIES, 12(3) [10.3390/en12030333].

Wave Energy Assessment around the Aegadian Islands (Sicily)

Re, Carlo
;
Manno, Giorgio;Ciraolo, Giuseppe;
2019-01-01

Abstract

This paper presents the estimation of the wave energy potential around the Aegadian islands (Italy), carried out on the basis of high resolution wave hindcast. This reanalysis was developed employing Weather Research and Forecast (WRF) and WAVEWATCH IIImodels for the modelling of the atmosphere and the waves, respectively. Wave climate has been determined using the above-mentioned 32-year dataset covering the years from 1979 to 2010. To improve the information about wave characteristics regarding spatial details, i.e., increasing wave model resolution, especially in the nearshore region around the islands, a SWAN (Simulating WAves Nearshore) wave propagation model was used. Results obtained through the development of the nearshore analysis detected four energetic hotspots close to the coast of the islands. Near Marettimo island, only one hotspot was detected with a maximum wave energy flux of 9 kW/m, whereas, around Favignana, three hotspots were identified with a maximum wave energy flux of 6.5 kW/m. Such values of available wave energy resource are promising to develop different projects for wave energy converters in specific areas along the coast, in order to improve the energetic independence of Aegadian islands.
2019
Re, C., Manno, G., Ciraolo, G., Besio, G. (2019). Wave Energy Assessment around the Aegadian Islands (Sicily). ENERGIES, 12(3) [10.3390/en12030333].
File in questo prodotto:
File Dimensione Formato  
Wave Energy Assessment around the Aegadian Islands (Sicily).pdf

accesso aperto

Tipologia: Versione Editoriale
Dimensione 9.43 MB
Formato Adobe PDF
9.43 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/356088
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 18
social impact