Phase change materials (PCMs) are highly attractive for nonvolatile electrical and all-optical memory applications because of unique features such as ultrafast and reversible phase transitions, long-term endurance, and high scalability to nanoscale dimensions. Understanding their transient characteristics upon phase transition in both the electrical and the optical domains is essential for using PCMs in future multifunctional optoelectronic circuits. Here, we use a PCM nanowire embedded into a nanophotonic circuit to study switching dynamics in mixed-mode operation. Evanescent coupling between light traveling along waveguides and a phase-change nanowire enables reversible phase transition between amorphous and crystalline states. We perform time-resolved measurements of the transient change in both the optical transmission and resistance of the nanowire and show reversible switching operations in both the optical and the electrical domains. Our results pave the way toward on-chip multifunctional optoelectronic integrated devices, waveguide integrated memories, and hybrid processing applications.

Lu, Y., Stegmaier, M., Nukala, P., Giambra, M.A., Ferrari, S., Busacca, A., et al. (2017). Mixed-mode operation of hybrid phase-change nanophotonic circuits. NANO LETTERS, 17(1), 150-155 [10.1021/acs.nanolett.6b03688].

Mixed-mode operation of hybrid phase-change nanophotonic circuits

Giambra, Marco A.;Busacca, Alessandro;
2017-01-01

Abstract

Phase change materials (PCMs) are highly attractive for nonvolatile electrical and all-optical memory applications because of unique features such as ultrafast and reversible phase transitions, long-term endurance, and high scalability to nanoscale dimensions. Understanding their transient characteristics upon phase transition in both the electrical and the optical domains is essential for using PCMs in future multifunctional optoelectronic circuits. Here, we use a PCM nanowire embedded into a nanophotonic circuit to study switching dynamics in mixed-mode operation. Evanescent coupling between light traveling along waveguides and a phase-change nanowire enables reversible phase transition between amorphous and crystalline states. We perform time-resolved measurements of the transient change in both the optical transmission and resistance of the nanowire and show reversible switching operations in both the optical and the electrical domains. Our results pave the way toward on-chip multifunctional optoelectronic integrated devices, waveguide integrated memories, and hybrid processing applications.
2017
Settore ING-INF/01 - Elettronica
Lu, Y., Stegmaier, M., Nukala, P., Giambra, M.A., Ferrari, S., Busacca, A., et al. (2017). Mixed-mode operation of hybrid phase-change nanophotonic circuits. NANO LETTERS, 17(1), 150-155 [10.1021/acs.nanolett.6b03688].
File in questo prodotto:
File Dimensione Formato  
acs.nanolett.6b03688-1.pdf

Solo gestori archvio

Descrizione: Articolo principale
Tipologia: Versione Editoriale
Dimensione 5.43 MB
Formato Adobe PDF
5.43 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/351800
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 149
  • ???jsp.display-item.citation.isi??? 137
social impact