Variational methods and critical point theorems are used to discuss existence of infinitely many solutions to boundary value problem for fractional order differential equations where Riemann-Liouville fractional derivatives and Caputo fractional derivatives are used. An example is given to illustrate our result.
Averna, D., Sciammetta, A., & Tornatore, E. (2018). Infinitely many solutions to boundary value problem for fractional differential equations. FRACTIONAL CALCULUS & APPLIED ANALYSIS, 21(6), 1585-1597.
Data di pubblicazione: | 2018 |
Titolo: | Infinitely many solutions to boundary value problem for fractional differential equations |
Autori: | TORNATORE, Elisabetta (Corresponding) |
Citazione: | Averna, D., Sciammetta, A., & Tornatore, E. (2018). Infinitely many solutions to boundary value problem for fractional differential equations. FRACTIONAL CALCULUS & APPLIED ANALYSIS, 21(6), 1585-1597. |
Rivista: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1515/fca-2018-0083 |
Abstract: | Variational methods and critical point theorems are used to discuss existence of infinitely many solutions to boundary value problem for fractional order differential equations where Riemann-Liouville fractional derivatives and Caputo fractional derivatives are used. An example is given to illustrate our result. |
URL: | http://www.springerlink.com/content/1311-0454/ |
Appare nelle tipologie: | 1.01 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
Infinitely many solutions to boundary value problem for fractional differential equations.pdf | N/A | Administrator Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.