Variational methods and critical point theorems are used to discuss existence of infinitely many solutions to boundary value problem for fractional order differential equations where Riemann-Liouville fractional derivatives and Caputo fractional derivatives are used. An example is given to illustrate our result.

Averna, D., Sciammetta, A., Tornatore, E. (2018). Infinitely many solutions to boundary value problem for fractional differential equations. FRACTIONAL CALCULUS & APPLIED ANALYSIS, 21(6), 1585-1597 [10.1515/fca-2018-0083].

Infinitely many solutions to boundary value problem for fractional differential equations

Averna, Diego;Sciammetta, Angela;Tornatore, Elisabetta
2018-01-01

Abstract

Variational methods and critical point theorems are used to discuss existence of infinitely many solutions to boundary value problem for fractional order differential equations where Riemann-Liouville fractional derivatives and Caputo fractional derivatives are used. An example is given to illustrate our result.
2018
Averna, D., Sciammetta, A., Tornatore, E. (2018). Infinitely many solutions to boundary value problem for fractional differential equations. FRACTIONAL CALCULUS & APPLIED ANALYSIS, 21(6), 1585-1597 [10.1515/fca-2018-0083].
File in questo prodotto:
File Dimensione Formato  
Infinitely many solutions to boundary value problem for fractional differential equations.pdf

Solo gestori archvio

Dimensione 1.04 MB
Formato Adobe PDF
1.04 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/351043
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact