We report on low-resistivity GaN tunnel junctions (TJ) on blue light-emitting diodes (LEDs). Si-doped n ++-GaN layers are grown by metalorganic chemical vapor deposition directly on LED epiwafers. Low growth temperature (<800 °C) was used to hinder Mg-passivation by hydrogen in the p ++-GaN top surface. This allows achieving low-resistivity TJs without the need for post-growth Mg activation. TJs are further improved by inserting a 5 nm thick In0.15Ga0.85N interlayer (IL) within the GaN TJ thanks to piezoelectric polarization induced band bending. Eventually, the impact of InGaN IL on the internal quantum efficiency of blue LEDs is discussed.

Sohi, P., Mosca, M., Chen, Y., Carlin, J., Grandjean, N. (2019). Low-temperature growth of n ++-GaN by metalorganic chemical vapor deposition to achieve low-resistivity tunnel junctions on blue light emitting diodes. SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 34(1) [10.1088/1361-6641/aaed6e].

Low-temperature growth of n ++-GaN by metalorganic chemical vapor deposition to achieve low-resistivity tunnel junctions on blue light emitting diodes

Mosca, Mauro;
2019-01-01

Abstract

We report on low-resistivity GaN tunnel junctions (TJ) on blue light-emitting diodes (LEDs). Si-doped n ++-GaN layers are grown by metalorganic chemical vapor deposition directly on LED epiwafers. Low growth temperature (<800 °C) was used to hinder Mg-passivation by hydrogen in the p ++-GaN top surface. This allows achieving low-resistivity TJs without the need for post-growth Mg activation. TJs are further improved by inserting a 5 nm thick In0.15Ga0.85N interlayer (IL) within the GaN TJ thanks to piezoelectric polarization induced band bending. Eventually, the impact of InGaN IL on the internal quantum efficiency of blue LEDs is discussed.
2019
Sohi, P., Mosca, M., Chen, Y., Carlin, J., Grandjean, N. (2019). Low-temperature growth of n ++-GaN by metalorganic chemical vapor deposition to achieve low-resistivity tunnel junctions on blue light emitting diodes. SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 34(1) [10.1088/1361-6641/aaed6e].
File in questo prodotto:
File Dimensione Formato  
Sohi_2019_Semicond._Sci._Technol._34_015002.pdf

Solo gestori archvio

Tipologia: Versione Editoriale
Dimensione 1.05 MB
Formato Adobe PDF
1.05 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
preprint.pdf

accesso aperto

Tipologia: Pre-print
Dimensione 1.84 MB
Formato Adobe PDF
1.84 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/346947
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 9
social impact