Let Y be a smooth del Pezzo variety of dimension n>=3, i.e. a smooth complex projective variety endowed with an ample divisor H such that K_Y = (n+1)H. Let d be the degree H^n of Y and assume that d >= 4. Consider a linear subsystem of |H| whose base locus is zero-dimensional of length d. The subsystem defines a rational map onto P^{n-1} and, under some mild extra hypothesis, the general pseudofibers are elliptic curves. We study the elliptic fibration X -> P^{n-1} obtained by resolving the indeterminacy and call the variety X a del Pezzo elliptic variety. Extending the results of [7] we mainly prove that the Mordell-Weil group of the fibration is finite if and only if the Cox ring of X is finitely generated.
Antonio Laface , Andrea L. Tironi , Luca Ugaglia (2019). Del Pezzo elliptic varieties of degree d <= 4. ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA. CLASSE DI SCIENZE, 19(3), 1085-1110 [10.2422/2036-2145.201612_006].
Del Pezzo elliptic varieties of degree d <= 4
Luca Ugaglia
2019-01-01
Abstract
Let Y be a smooth del Pezzo variety of dimension n>=3, i.e. a smooth complex projective variety endowed with an ample divisor H such that K_Y = (n+1)H. Let d be the degree H^n of Y and assume that d >= 4. Consider a linear subsystem of |H| whose base locus is zero-dimensional of length d. The subsystem defines a rational map onto P^{n-1} and, under some mild extra hypothesis, the general pseudofibers are elliptic curves. We study the elliptic fibration X -> P^{n-1} obtained by resolving the indeterminacy and call the variety X a del Pezzo elliptic variety. Extending the results of [7] we mainly prove that the Mordell-Weil group of the fibration is finite if and only if the Cox ring of X is finitely generated.File | Dimensione | Formato | |
---|---|---|---|
quartics_submitted.pdf
accesso aperto
Descrizione: articolo
Tipologia:
Post-print
Dimensione
516.29 kB
Formato
Adobe PDF
|
516.29 kB | Adobe PDF | Visualizza/Apri |
2370863.pdf
Solo gestori archvio
Descrizione: articolo
Tipologia:
Versione Editoriale
Dimensione
7.77 MB
Formato
Adobe PDF
|
7.77 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.