This paper describes an approach to the keel design of a sailing yacht. The related software, which is fully automatic, permits to obtain an optimal shape by modifying the surface used to define the keel planform. B-spline curves and surfaces have been used because of their ability in following complex shapes. The algorithm integrates ad hoc implemented original software with Computational Fluid Dynamics (CFD) commercial ones. The optimisation procedure makes use of Genetic Algorithms (GAs) and a gradient – based optimiser for the refinement of the solution. A careful CAD and CFD modelling leads to a stable and efficient generalised method, which has been applied to the design of the centreboard of the 5o5 international class racing dinghy.
This paper describes an approach to the keel design of a sailing yacht. The related software, which is fully automatic, leads to the optimal shape by modifying the surface used to define the keel planform. B-spline curves and surfaces have been used due to their ability in following complex shapes. The algorithm integrates ad hoc implemented original software with computational fluid dynamics (CFD) commercial ones. The optimisation procedure uses genetic algorithms (GAs) and a gradient-based optimiser for the refinement of the solution. A careful CAD and CFD modelling leads to a stable and efficient generalised method, which has been applied to the design of the centreboard of the 5o5 international class racing dinghy.
Cirello, A., & Mancuso, A. (2008). A Numerical Approach to the Keel Design of a Sailing Yacht. OCEAN ENGINEERING, 35(14-15), 1439-1447.
Data di pubblicazione: | 2008 |
Titolo: | A Numerical Approach to the Keel Design of a Sailing Yacht |
Autori: | |
Citazione: | Cirello, A., & Mancuso, A. (2008). A Numerical Approach to the Keel Design of a Sailing Yacht. OCEAN ENGINEERING, 35(14-15), 1439-1447. |
Rivista: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1016/j.oceaneng.2008.07.002 |
Abstract: | This paper describes an approach to the keel design of a sailing yacht. The related software, which is fully automatic, leads to the optimal shape by modifying the surface used to define the keel planform. B-spline curves and surfaces have been used due to their ability in following complex shapes. The algorithm integrates ad hoc implemented original software with computational fluid dynamics (CFD) commercial ones. The optimisation procedure uses genetic algorithms (GAs) and a gradient-based optimiser for the refinement of the solution. A careful CAD and CFD modelling leads to a stable and efficient generalised method, which has been applied to the design of the centreboard of the 5o5 international class racing dinghy. |
Settore Scientifico Disciplinare: | Settore ING-IND/15 - Disegno E Metodi Dell'Ingegneria Industriale |
Appare nelle tipologie: | 1.01 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
34553.pdf | N/A | Administrator Richiedi una copia |