Indirect ImmunoFluorescence (IIF) assays are recommended as the gold standard method for detection of antinuclear antibodies (ANAs), which are of considerable importance in the diagnosis of autoimmune diseases. Fluorescence intensity analysis is very often complex, and depending on the capabilities of the operator, the association with incorrect classes is statistically easy. In this paper, we present a Convolutional Neural Network (CNN) system to classify positive/negative fluorescence intensity of HEp-2 IIF images, which is important for autoimmune diseases diagnosis. The method uses the best known pre-trained CNNs to extract features and a support vector machine (SVM) classifier for the final association to the positive or negative classes. This system has been developed and the classifier was trained on a database implemented by the AIDA (AutoImmunité, Diagnostic Assisté par ordinateur) project. The method proposed here has been tested on a public part of the same database, consisting of 2080 IIF images. The performance analysis showed an accuracy of fluorescent intensity around 93%. The results have been evaluated by comparing them with some of the most representative state-of-the-art works, demonstrating the quality of the system in the intensity classification of HEp-2 images.
Cascio, D., Taormina, V., Raso, G. (2019). Deep Convolutional Neural Network for HEp-2 fluorescence intensity classification. APPLIED SCIENCES, 9(3) [10.3390/app9030408].
Deep Convolutional Neural Network for HEp-2 fluorescence intensity classification
Cascio, Donato
;Taormina, Vincenzo;Raso, Giuseppe
2019-01-01
Abstract
Indirect ImmunoFluorescence (IIF) assays are recommended as the gold standard method for detection of antinuclear antibodies (ANAs), which are of considerable importance in the diagnosis of autoimmune diseases. Fluorescence intensity analysis is very often complex, and depending on the capabilities of the operator, the association with incorrect classes is statistically easy. In this paper, we present a Convolutional Neural Network (CNN) system to classify positive/negative fluorescence intensity of HEp-2 IIF images, which is important for autoimmune diseases diagnosis. The method uses the best known pre-trained CNNs to extract features and a support vector machine (SVM) classifier for the final association to the positive or negative classes. This system has been developed and the classifier was trained on a database implemented by the AIDA (AutoImmunité, Diagnostic Assisté par ordinateur) project. The method proposed here has been tested on a public part of the same database, consisting of 2080 IIF images. The performance analysis showed an accuracy of fluorescent intensity around 93%. The results have been evaluated by comparing them with some of the most representative state-of-the-art works, demonstrating the quality of the system in the intensity classification of HEp-2 images.File | Dimensione | Formato | |
---|---|---|---|
applsci-09-00408.pdf
accesso aperto
Tipologia:
Versione Editoriale
Dimensione
770.39 kB
Formato
Adobe PDF
|
770.39 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.