This paper deals with a robust input-output feedback linearization control technique for induction motors. Indeed, classic feedback linearization presents two main disadvantages: 1) the accuracy of the dynamic model; and 2) the corresponding correct knowledge of the model parameters. To address this issue, the linear controller has been substituted with a suitably controller designed to be robust to the variations of the main parameters of the induction motor, like stator and rotor resistances, and the three-phase magnetizing inductance. The proposed controller has been tested both in numerical simulation and experimentally on a suitably designed test setup. Moreover, it has been compared with the classical feedback linearization based on linear controllers, highlighting the improvements in terms of dynamic performance, when parameter variations occur. Results confirm a significant increase of the robustness of the controller against parameter variations.
Accetta, A., Alonge, F., Cirrincione, M., D'Ippolito, F., Pucci, M., Rabbeni, R., et al. (2019). Robust control for high performance induction motor drives based on partial state-feedback linearization. IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 55(1), 490-503 [10.1109/TIA.2018.2869112].
Robust control for high performance induction motor drives based on partial state-feedback linearization
Alonge, Francesco;D'Ippolito, Filippo;Sferlazza, Antonino
2019-01-01
Abstract
This paper deals with a robust input-output feedback linearization control technique for induction motors. Indeed, classic feedback linearization presents two main disadvantages: 1) the accuracy of the dynamic model; and 2) the corresponding correct knowledge of the model parameters. To address this issue, the linear controller has been substituted with a suitably controller designed to be robust to the variations of the main parameters of the induction motor, like stator and rotor resistances, and the three-phase magnetizing inductance. The proposed controller has been tested both in numerical simulation and experimentally on a suitably designed test setup. Moreover, it has been compared with the classical feedback linearization based on linear controllers, highlighting the improvements in terms of dynamic performance, when parameter variations occur. Results confirm a significant increase of the robustness of the controller against parameter variations.File | Dimensione | Formato | |
---|---|---|---|
08456578.pdf
Solo gestori archvio
Descrizione: Articolo principale
Tipologia:
Versione Editoriale
Dimensione
2.94 MB
Formato
Adobe PDF
|
2.94 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
FL_rob (4).pdf
Solo gestori archvio
Tipologia:
Post-print
Dimensione
6.24 MB
Formato
Adobe PDF
|
6.24 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.