The paper reports the main results of an experiment carried out on a membrane bioreactor (MBR) plant designed for the treatment of shipboard slops. With a view of a co-treatment process of the slop with other wastewaters, sodium acetate, as external co-substrate, was supplied (high dosage – Period 1, low dosage – Period 2) to evaluate its effects on hydrocarbons removal. The MBR pilot plant enabled approximately 99% of total petroleum hydrocarbon (TPH) removal during the entire experiment, confirming the robustness of the MBR technology for the treatment of slops. The chromatography/mass spectrometry analysis showed that the removal efficiency for each alkane was close to the value observed for total mixture removal (>99%) and the hydrocarbons removal was mostly due to the microorganism-mediated biodegradation. The biological contribution to TPH removal increased from approximately 85% to 98% when the co-substrate was decreased. Biomass kinetics revealed that a lower co-substrate dosage enhanced the growth of bacterial groups able to use hydrocarbons as primary substrate. A clear predominance of Microthrix Parvicella under low co-substrate dosage was observed. However, the lower co-substrate addition caused a significant worsening in the physical properties of the activated sludge, which resulted enriched in soluble exopolymers (>70%), more hydrophobic (>90%) and with small and dispersed flocs (<30 μm). Consequently, the membrane permeability reduced because of the irreversible fouling increase.

Piazzese, D. (2018). Effect of a co-substrate supply in a MBR treating shipboard slop: Analysis of hydrocarbon removal, biomass activity and membrane fouling tendency. BIOCHEMICAL ENGINEERING JOURNAL, 140, 178-188 [10.1016/j.bej.2018.10.003].

Effect of a co-substrate supply in a MBR treating shipboard slop: Analysis of hydrocarbon removal, biomass activity and membrane fouling tendency

Piazzese D.;Corsino S. F.
;
Torregrossa M.;Bongiorno D.;Indelicato S.;Viviani G.
2018-01-01

Abstract

The paper reports the main results of an experiment carried out on a membrane bioreactor (MBR) plant designed for the treatment of shipboard slops. With a view of a co-treatment process of the slop with other wastewaters, sodium acetate, as external co-substrate, was supplied (high dosage – Period 1, low dosage – Period 2) to evaluate its effects on hydrocarbons removal. The MBR pilot plant enabled approximately 99% of total petroleum hydrocarbon (TPH) removal during the entire experiment, confirming the robustness of the MBR technology for the treatment of slops. The chromatography/mass spectrometry analysis showed that the removal efficiency for each alkane was close to the value observed for total mixture removal (>99%) and the hydrocarbons removal was mostly due to the microorganism-mediated biodegradation. The biological contribution to TPH removal increased from approximately 85% to 98% when the co-substrate was decreased. Biomass kinetics revealed that a lower co-substrate dosage enhanced the growth of bacterial groups able to use hydrocarbons as primary substrate. A clear predominance of Microthrix Parvicella under low co-substrate dosage was observed. However, the lower co-substrate addition caused a significant worsening in the physical properties of the activated sludge, which resulted enriched in soluble exopolymers (>70%), more hydrophobic (>90%) and with small and dispersed flocs (<30 μm). Consequently, the membrane permeability reduced because of the irreversible fouling increase.
2018
Settore ICAR/03 - Ingegneria Sanitaria-Ambientale
Piazzese, D. (2018). Effect of a co-substrate supply in a MBR treating shipboard slop: Analysis of hydrocarbon removal, biomass activity and membrane fouling tendency. BIOCHEMICAL ENGINEERING JOURNAL, 140, 178-188 [10.1016/j.bej.2018.10.003].
File in questo prodotto:
File Dimensione Formato  
articolo pdf 2018.pdf

Solo gestori archvio

Dimensione 6.27 MB
Formato Adobe PDF
6.27 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/336190
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact