Abstract: The modification of polymer architectures by reaction with chemically adsorbed hydroxyl radicals has been thoroughly investigated by electrolyzing dilute aqueous solutions of the biocompatible polymer poly(vinylpyrrolidone) (PVP), using an undivided electrolytic cell with a Ti/IrO2–Ta2O5(DSA®) anode. Several electrolyses were performed to assess the influence of the applied potential, the circulated charge and the PVP concentration, which was always kept low to avoid chain overlapping. From the results obtained, it can be concluded that the electro-oxidation of PVP solutions using a cheap anode is an effective method to crosslink initially isolated polymer chains, eventually increasing the size of their random coils. Furthermore, the average size of the modified macromolecules can be controlled by tuning the electrode potential and/or the current density and the circulated charge. At high anodic potential values, the hydroxyl radicals formed at DSA®were also effective to generate reactive functional groups on the PVP backbone, which is a very interesting feature for future biomedical applications.

Sonia Lanzalaco, I.S. (2018). Facile crosslinking of poly(vinylpyrrolidone) by electro-oxidation with IrO2-based anode under potentiostatic conditions. JOURNAL OF APPLIED ELECTROCHEMISTRY, 1343-1352 [10.1007/s10800-018-1237-8].

Facile crosslinking of poly(vinylpyrrolidone) by electro-oxidation with IrO2-based anode under potentiostatic conditions

Sonia Lanzalaco;Alessandro Galia;Maria Antonietta Sabatino;Clelia Dispenza;Onofrio Scialdone
2018-01-01

Abstract

Abstract: The modification of polymer architectures by reaction with chemically adsorbed hydroxyl radicals has been thoroughly investigated by electrolyzing dilute aqueous solutions of the biocompatible polymer poly(vinylpyrrolidone) (PVP), using an undivided electrolytic cell with a Ti/IrO2–Ta2O5(DSA®) anode. Several electrolyses were performed to assess the influence of the applied potential, the circulated charge and the PVP concentration, which was always kept low to avoid chain overlapping. From the results obtained, it can be concluded that the electro-oxidation of PVP solutions using a cheap anode is an effective method to crosslink initially isolated polymer chains, eventually increasing the size of their random coils. Furthermore, the average size of the modified macromolecules can be controlled by tuning the electrode potential and/or the current density and the circulated charge. At high anodic potential values, the hydroxyl radicals formed at DSA®were also effective to generate reactive functional groups on the PVP backbone, which is a very interesting feature for future biomedical applications.
2018
Sonia Lanzalaco, I.S. (2018). Facile crosslinking of poly(vinylpyrrolidone) by electro-oxidation with IrO2-based anode under potentiostatic conditions. JOURNAL OF APPLIED ELECTROCHEMISTRY, 1343-1352 [10.1007/s10800-018-1237-8].
File in questo prodotto:
File Dimensione Formato  
Lanzalaco2018_Article_FacileCrosslinkingOfPolyVinylp.pdf

Solo gestori archvio

Descrizione: Articolo principale
Dimensione 1.41 MB
Formato Adobe PDF
1.41 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/330189
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 21
social impact