Given a pair of operators a and b acting on a Hilbert space H, such that [a,b]=1, the authors give a method to construct a regular bi-orthogonal pair of sequences in H. They study the relationship between the conditions on a,b,a†,b† and the operators Ae,Be,A†e,B†e, considered by one of the authors in a previous paper, in the set-up of a general theory of bi-orthogonal pair sequences. Then they give a method to construct operators A and B with the so-called D-pseudo bosons conditions, i.e. the commutation rule and some assumptions, on a dense subspace D of H, considered in the literature. Finally, some physical examples are given.
Tschinke Francesco (2017). MR3535311 Reviewed Inoue, H.(J-KYUSGM); Takakura, M.(J-FUE-AM) Regular biorthogonal pairs and pseudo-bosonic operators. (English summary) J. Math. Phys. 57 (2016), no. 8, 083503, 9 pp. 81Q10 (42B35 81Q12) [Altro].
MR3535311 Reviewed Inoue, H.(J-KYUSGM); Takakura, M.(J-FUE-AM) Regular biorthogonal pairs and pseudo-bosonic operators. (English summary) J. Math. Phys. 57 (2016), no. 8, 083503, 9 pp. 81Q10 (42B35 81Q12)
Tschinke Francesco
2017-01-01
Abstract
Given a pair of operators a and b acting on a Hilbert space H, such that [a,b]=1, the authors give a method to construct a regular bi-orthogonal pair of sequences in H. They study the relationship between the conditions on a,b,a†,b† and the operators Ae,Be,A†e,B†e, considered by one of the authors in a previous paper, in the set-up of a general theory of bi-orthogonal pair sequences. Then they give a method to construct operators A and B with the so-called D-pseudo bosons conditions, i.e. the commutation rule and some assumptions, on a dense subspace D of H, considered in the literature. Finally, some physical examples are given.File | Dimensione | Formato | |
---|---|---|---|
3535311.pdf
Solo gestori archvio
Dimensione
145.74 kB
Formato
Adobe PDF
|
145.74 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.