We give a representation of any integer as a vector of the Witt ring W(Z_p) and relate it to the Fermat quotient q(n) = (n^(p−1) − 1)/p. Logarithms are introduced in order to establish an isomorphism between the commutative unipotent groups 1+ pW(Z_p) and W(Z_p).
DI BARTOLO A, FALCONE G (2008). Witt vectors and Fermat quotient. JOURNAL OF NUMBER THEORY, 128, 1376-1387 [10.1016/j.jnt.2007.11.003].
Witt vectors and Fermat quotient
DI BARTOLO, Alfonso;FALCONE, Giovanni
2008-01-01
Abstract
We give a representation of any integer as a vector of the Witt ring W(Z_p) and relate it to the Fermat quotient q(n) = (n^(p−1) − 1)/p. Logarithms are introduced in order to establish an isomorphism between the commutative unipotent groups 1+ pW(Z_p) and W(Z_p).File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0022314X07002363-main.pdf
Solo gestori archvio
Dimensione
154.45 kB
Formato
Adobe PDF
|
154.45 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.