We give a representation of any integer as a vector of the Witt ring W(Z_p) and relate it to the Fermat quotient q(n) = (n^(p−1) − 1)/p. Logarithms are introduced in order to establish an isomorphism between the commutative unipotent groups 1+ pW(Z_p) and W(Z_p).

DI BARTOLO A, FALCONE G (2008). Witt vectors and Fermat quotient. JOURNAL OF NUMBER THEORY, 128, 1376-1387 [10.1016/j.jnt.2007.11.003].

Witt vectors and Fermat quotient

DI BARTOLO, Alfonso;FALCONE, Giovanni
2008-01-01

Abstract

We give a representation of any integer as a vector of the Witt ring W(Z_p) and relate it to the Fermat quotient q(n) = (n^(p−1) − 1)/p. Logarithms are introduced in order to establish an isomorphism between the commutative unipotent groups 1+ pW(Z_p) and W(Z_p).
2008
DI BARTOLO A, FALCONE G (2008). Witt vectors and Fermat quotient. JOURNAL OF NUMBER THEORY, 128, 1376-1387 [10.1016/j.jnt.2007.11.003].
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0022314X07002363-main.pdf

Solo gestori archvio

Dimensione 154.45 kB
Formato Adobe PDF
154.45 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/31726
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact