We study the perfect conductivity problem when two perfectly conducting inclusions are closely located to each other in an anisotropic background medium. We establish optimal upper and lower gradient bounds for the solution in any dimension which characterize the singular behavior of the electric field as the distance between the inclusions goes to zero.

Ciraolo, G., Sciammetta, A. (2018). Gradient estimates for the perfect conductivity problem in anisotropic media. JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES, 127, 268-298 [10.1016/j.matpur.2018.09.006].

Gradient estimates for the perfect conductivity problem in anisotropic media

Ciraolo, Giulio
;
Sciammetta, Angela
2018-01-01

Abstract

We study the perfect conductivity problem when two perfectly conducting inclusions are closely located to each other in an anisotropic background medium. We establish optimal upper and lower gradient bounds for the solution in any dimension which characterize the singular behavior of the electric field as the distance between the inclusions goes to zero.
2018
Ciraolo, G., Sciammetta, A. (2018). Gradient estimates for the perfect conductivity problem in anisotropic media. JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES, 127, 268-298 [10.1016/j.matpur.2018.09.006].
File in questo prodotto:
File Dimensione Formato  
blow_up_anisotropic_REVISITED_JMPA.pdf

Open Access dal 14/09/2020

Tipologia: Post-print
Dimensione 928.28 kB
Formato Adobe PDF
928.28 kB Adobe PDF Visualizza/Apri
1-s2.0-S0021782418301478-main.pdf

Solo gestori archvio

Tipologia: Versione Editoriale
Dimensione 1.29 MB
Formato Adobe PDF
1.29 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/316615
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 22
social impact