A simple system of two particles in a bidimensional configurational space S is studied. The possibility of breaking in S the time-independent Schrodinger equation of the system into two separated one-dimensional one-body Schrodinger equations is assumed. In this paper, we focus on how the latter property is countered by imposing such boundary conditions as confinement to a limited region of S and/or restrictions on the joint coordinate probability density stemming from the sign-invariance condition of the relative coordinate (an impenetrability condition). Our investigation demonstrates the reducibility of the problem under scrutiny into that of a single particle living in a limited domain of its bidimensional configurational space. These general ideas are illustrated introducing the coordinates Xcand x of the center of mass of two particles and of the associated relative motion, respectively. The effects of the confinement and the impenetrability are then analyzed by studying with the help of an appropriate Green's function and the time evolution of the covariance of Xcand x. Moreover, to calculate the state of a single particle constrained within a square, a rhombus, a triangle and a rectangle, the Green's function expression in terms of Jacobi θ3-function is applied. All the results are illustrated by examples.
Man'ko, V., Markovich, L., Messina, A. (2017). Breakdown of separability due to confinement. REPORTS ON MATHEMATICAL PHYSICS, 80(3), 277-294 [10.1016/S0034-4877(17)30083-6].
Breakdown of separability due to confinement
Messina, A.Writing – Original Draft Preparation
2017-01-01
Abstract
A simple system of two particles in a bidimensional configurational space S is studied. The possibility of breaking in S the time-independent Schrodinger equation of the system into two separated one-dimensional one-body Schrodinger equations is assumed. In this paper, we focus on how the latter property is countered by imposing such boundary conditions as confinement to a limited region of S and/or restrictions on the joint coordinate probability density stemming from the sign-invariance condition of the relative coordinate (an impenetrability condition). Our investigation demonstrates the reducibility of the problem under scrutiny into that of a single particle living in a limited domain of its bidimensional configurational space. These general ideas are illustrated introducing the coordinates Xcand x of the center of mass of two particles and of the associated relative motion, respectively. The effects of the confinement and the impenetrability are then analyzed by studying with the help of an appropriate Green's function and the time evolution of the covariance of Xcand x. Moreover, to calculate the state of a single particle constrained within a square, a rhombus, a triangle and a rectangle, the Green's function expression in terms of Jacobi θ3-function is applied. All the results are illustrated by examples.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0034487717300836-main.pdf
Solo gestori archvio
Dimensione
380.89 kB
Formato
Adobe PDF
|
380.89 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.