We tested the novel NF-kappaB inhibitor dehydroxymethylepoxyquinomicin (DHMEQ) in the hepatic cancer (HCC) HepG2, HA22T/VGH and HuH-6 cells. The sensitivity to the cell growth inhibitory and apoptotic effects of the agent increased along with the levels of constitutively activated NF-kappaB, which were low in HepG2 and higher in HA22T/VGH and HuH-6. In HA22T/VGH, DHMEQ exhibited synergy with cisplatin. In the same cells, DHMEQ exerted dose-dependent decreases in the nuclear levels of activated NF-kappaB and attenuated NF-kappaB activation by cisplatin. It down-regulated Bcl-XL mRNA in a dose-dependent manner and up-regulated that of Bcl-XS. It also decreased interleukin 6 (IL-6), NAIP and, after 16 h of exposure to the higher concentration tested (10 microg/ml), c-IAP-1 mRNA levels. At 10 microg/ml it caused significant increase in Bax, XIAP, cyclin D1 and beta-catenin mRNAs. The combination of DHMEQ with cisplatin produced unexpected significant decrease in c-IAP-2 and Bcl-XS mRNAs as well as additive decrease (IL-6, NAIP and, after 16 h, Bcl-XL) or increase (XIAP at 8 h) in gene expression. HA22T/VGH produce IL-6; in agreement with the results on mRNA, DHMEQ inhibited such a process. HA22T/VGH lack the IL-6 receptor alpha chain, ruling out that in these cells the antitumor effects of DHMEQ may be attributed to an interference with a growth stimulatory autocrine loop based on IL-6. However, the use of DHMEQ in HCC might be beneficial to contrast the adverse systemic effects of the released cytokine.
POMA P, NOTARBARTOLO DI VILLAROSA, M., LABBOZZETTA M, SANGUEDOLCE R, ALAIMO A, CARINA V, et al. (2006). "Antitumor effects of the novel NF-kB inhibitor dehydroxymethylepoxyquinomicin (DHMEQ) on human hepatic cancer cells: analysis of synergy with cisplatin and of possible correlation with inhibition of pro-survival genes and IL-6 production”. INTERNATIONAL JOURNAL OF ONCOLOGY, 28(4), 923-930.
"Antitumor effects of the novel NF-kB inhibitor dehydroxymethylepoxyquinomicin (DHMEQ) on human hepatic cancer cells: analysis of synergy with cisplatin and of possible correlation with inhibition of pro-survival genes and IL-6 production”.
POMA, Paola;NOTARBARTOLO DI VILLAROSA, Monica;LABBOZZETTA, Manuela;SANGUEDOLCE, Rosario;CARINA, Valeria;MAURICI, Annamaria;D'ALESSANDRO, Natale
2006-01-01
Abstract
We tested the novel NF-kappaB inhibitor dehydroxymethylepoxyquinomicin (DHMEQ) in the hepatic cancer (HCC) HepG2, HA22T/VGH and HuH-6 cells. The sensitivity to the cell growth inhibitory and apoptotic effects of the agent increased along with the levels of constitutively activated NF-kappaB, which were low in HepG2 and higher in HA22T/VGH and HuH-6. In HA22T/VGH, DHMEQ exhibited synergy with cisplatin. In the same cells, DHMEQ exerted dose-dependent decreases in the nuclear levels of activated NF-kappaB and attenuated NF-kappaB activation by cisplatin. It down-regulated Bcl-XL mRNA in a dose-dependent manner and up-regulated that of Bcl-XS. It also decreased interleukin 6 (IL-6), NAIP and, after 16 h of exposure to the higher concentration tested (10 microg/ml), c-IAP-1 mRNA levels. At 10 microg/ml it caused significant increase in Bax, XIAP, cyclin D1 and beta-catenin mRNAs. The combination of DHMEQ with cisplatin produced unexpected significant decrease in c-IAP-2 and Bcl-XS mRNAs as well as additive decrease (IL-6, NAIP and, after 16 h, Bcl-XL) or increase (XIAP at 8 h) in gene expression. HA22T/VGH produce IL-6; in agreement with the results on mRNA, DHMEQ inhibited such a process. HA22T/VGH lack the IL-6 receptor alpha chain, ruling out that in these cells the antitumor effects of DHMEQ may be attributed to an interference with a growth stimulatory autocrine loop based on IL-6. However, the use of DHMEQ in HCC might be beneficial to contrast the adverse systemic effects of the released cytokine.File | Dimensione | Formato | |
---|---|---|---|
Int_Journ_Oncol_2006.pdf
Solo gestori archvio
Tipologia:
Versione Editoriale
Dimensione
212.13 kB
Formato
Adobe PDF
|
212.13 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.