The study aimed to test the cadmium (Cd), copper (Cu) and lead (Pb) bioaccumulation capacity of the marine sponge Chondrilla nucula and to measure the expression of metallothioneins (MTs) by a western blotting assay to explore metal tolerance and its potential use as a bioremediator in contaminated coastal areas. C. nucula was sampled in a protected marine area in order to perform experiments on organisms living in a healthy environment. Under laboratory conditions, the sponges were exposed to increasing concentrations of Cd, Cu and Pb in tanks filled with artificial seawater set up for the experiments. For each metal, three waterborne concentrations (mgL−1) of Cd (0.02–0.04-0.08), Cu (0.1–0.2-0.4) and Pb (0.2–0.4-0.8) were considered separately. SPSS 20.0 was used for statistical analysis. Significant differences in bioaccumulation across levels of each metal were highlighted. Moreover, the amount accumulated in sponges increased proportionately with increasing levels of exposure for each metal as well as MT expression after Cd and Pb exposure. The results demonstrate the efficiency of C. nucula in accumulating high levels of Cu, but a low tolerance to progressively higher concentrations for Cd and Pb. The study suggests the suitability of the use of this species in bioremediation plans for moderately contaminated environments. However, the biological response in the field should be verified by the use of transplanted organisms from a control site to a polluted site.

Ferrante, M., Vassallo, M., Mazzola, A., Brundo, M.V., Pecoraro, R., Grasso, A., et al. (2018). In vivo exposure of the marine sponge Chondrilla nucula Schmidt, 1862 to cadmium (Cd), copper (Cu) and lead (Pb) and its potential use for bioremediation purposes. CHEMOSPHERE, 193, 1049-1057 [10.1016/j.chemosphere.2017.11.144].

In vivo exposure of the marine sponge Chondrilla nucula Schmidt, 1862 to cadmium (Cd), copper (Cu) and lead (Pb) and its potential use for bioremediation purposes

Mazzola, Antonio;
2018-01-01

Abstract

The study aimed to test the cadmium (Cd), copper (Cu) and lead (Pb) bioaccumulation capacity of the marine sponge Chondrilla nucula and to measure the expression of metallothioneins (MTs) by a western blotting assay to explore metal tolerance and its potential use as a bioremediator in contaminated coastal areas. C. nucula was sampled in a protected marine area in order to perform experiments on organisms living in a healthy environment. Under laboratory conditions, the sponges were exposed to increasing concentrations of Cd, Cu and Pb in tanks filled with artificial seawater set up for the experiments. For each metal, three waterborne concentrations (mgL−1) of Cd (0.02–0.04-0.08), Cu (0.1–0.2-0.4) and Pb (0.2–0.4-0.8) were considered separately. SPSS 20.0 was used for statistical analysis. Significant differences in bioaccumulation across levels of each metal were highlighted. Moreover, the amount accumulated in sponges increased proportionately with increasing levels of exposure for each metal as well as MT expression after Cd and Pb exposure. The results demonstrate the efficiency of C. nucula in accumulating high levels of Cu, but a low tolerance to progressively higher concentrations for Cd and Pb. The study suggests the suitability of the use of this species in bioremediation plans for moderately contaminated environments. However, the biological response in the field should be verified by the use of transplanted organisms from a control site to a polluted site.
2018
Ferrante, M., Vassallo, M., Mazzola, A., Brundo, M.V., Pecoraro, R., Grasso, A., et al. (2018). In vivo exposure of the marine sponge Chondrilla nucula Schmidt, 1862 to cadmium (Cd), copper (Cu) and lead (Pb) and its potential use for bioremediation purposes. CHEMOSPHERE, 193, 1049-1057 [10.1016/j.chemosphere.2017.11.144].
File in questo prodotto:
File Dimensione Formato  
2018_Ferrante_Chemosphere.pdf

Solo gestori archvio

Tipologia: Versione Editoriale
Dimensione 1.52 MB
Formato Adobe PDF
1.52 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/298511
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 19
social impact