Data-driven class discovery, i.e., the inference of cluster structure in a dataset, is a fundamental task in Data Analysis, in particular for the Life Sciences. We provide a tutorial on the most common approaches used for that task, focusing on methodologies for the prediction of the number of clusters in a dataset. Although the methods that we present are general in terms of the data for which they can be used, we offer a case study relevant for Microarray Data Analysis

Giancarlo, R., Utro, F. (2017). Computation Cluster Validation in the Big Data Era. In Reference Module in the Life Sciences [10.1016/B978-0-12-809633-8.20385-3].

Computation Cluster Validation in the Big Data Era

Giancarlo, Raffaele;Utro, Filippo
2017-01-01

Abstract

Data-driven class discovery, i.e., the inference of cluster structure in a dataset, is a fundamental task in Data Analysis, in particular for the Life Sciences. We provide a tutorial on the most common approaches used for that task, focusing on methodologies for the prediction of the number of clusters in a dataset. Although the methods that we present are general in terms of the data for which they can be used, we offer a case study relevant for Microarray Data Analysis
2017
Settore INF/01 - Informatica
Giancarlo, R., Utro, F. (2017). Computation Cluster Validation in the Big Data Era. In Reference Module in the Life Sciences [10.1016/B978-0-12-809633-8.20385-3].
File in questo prodotto:
File Dimensione Formato  
giancarlo2018(1).pdf

Solo gestori archvio

Dimensione 331.98 kB
Formato Adobe PDF
331.98 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/291370
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact