The emission of silicon nanocrystals (Si-NCs), synthesized by pulsed laser ablation in water, was investigated on varying the pH of the solution. These samples emit μs decaying orange photoluminescence (PL) associated with radiative recombination of quantum-confined excitons. Time-resolved spectra reveal that both the PL intensity and the lifetime increase by a factor of ∼20 when the pH decreases from 10 to 1 thus indicating that the emission quantum efficiency increases by inhibiting nonradiative decay rates. Infrared (IR) absorption and electron paramagnetic resonance (EPR) experiments allow addressing the origin of defects on which the excitons nonradiatively recombine. The linear correlation between the PL and the growth of SiH groups demonstrates that H+ions passivate the nonradiative defects that are located in the interlayer between the Si-NC core and the amorphous SiO2 shell.
Cannas, M., Camarda, P., Vaccaro, L., Amato, F., Messina, F., Fiore, T., et al. (2018). Enhancing the luminescence efficiency of silicon-nanocrystals by interaction with H+ions. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 20(15), 10445-10449 [10.1039/c8cp00616d].
Enhancing the luminescence efficiency of silicon-nanocrystals by interaction with H+ions
Cannas, Marco
;Vaccaro, Lavinia;Amato, Francesco;Messina, Fabrizio;Fiore, Tiziana;Li Vigni, Maria
2018-01-01
Abstract
The emission of silicon nanocrystals (Si-NCs), synthesized by pulsed laser ablation in water, was investigated on varying the pH of the solution. These samples emit μs decaying orange photoluminescence (PL) associated with radiative recombination of quantum-confined excitons. Time-resolved spectra reveal that both the PL intensity and the lifetime increase by a factor of ∼20 when the pH decreases from 10 to 1 thus indicating that the emission quantum efficiency increases by inhibiting nonradiative decay rates. Infrared (IR) absorption and electron paramagnetic resonance (EPR) experiments allow addressing the origin of defects on which the excitons nonradiatively recombine. The linear correlation between the PL and the growth of SiH groups demonstrates that H+ions passivate the nonradiative defects that are located in the interlayer between the Si-NC core and the amorphous SiO2 shell.File | Dimensione | Formato | |
---|---|---|---|
Cannas_PCCP18.pdf
Solo gestori archvio
Dimensione
1.73 MB
Formato
Adobe PDF
|
1.73 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.