In the present paper, the complex mechanical behaviour of the surfaces joining two differentbodies is analysed by a cohesive-frictional interface constitutive model. The kinematical behaviouris characterized by the presence of discontinuous displacement fields, that take place at the internalconnecting surfaces, both in the fully cohesive phase and in the delamination one. Generally, in order tocatch discontinuous displacement fields, internal connecting surfaces (adhesive layers) are modelled bymeans of interface elements, which connect, node by node, the meshes of the joined bodies, requiringthe mesh to be conforming to the geometry of the single bodies and to the relevant connecting surface.In the present paper, the Extended Finite Element Method (XFEM) is employed to model, both fromthe geometrical and from the kinematical point of view, the whole domain, including the connectedbodies and the joining surface. The joining surface is not discretized by specific finite elements, butit is defined as an internal discontinuity surface, whose spatial position inside the mesh is analyticallydefined. The proposed approach is developed for two-dimensional composite domains, formed by twoor more material portions joined together by means of a zero thickness adhesive layer. The numericalresults obtained with the proposed approach are compared with the results of the classical interfacefinite element approach. Some examples of delamination and frictional contact are proposed withlinear, circular and curvilinear adhesive layer.

Parrinello, F., Marannano, G. (2018). Cohesive delamination and frictional contact on joining surface via XFEM. AIMS MATERIALS SCIENCE, 5(1), 127-144 [10.3934/matersci.2018.1.127].

Cohesive delamination and frictional contact on joining surface via XFEM

Parrinello, Francesco
;
Marannano, Giuseppe
2018-01-01

Abstract

In the present paper, the complex mechanical behaviour of the surfaces joining two differentbodies is analysed by a cohesive-frictional interface constitutive model. The kinematical behaviouris characterized by the presence of discontinuous displacement fields, that take place at the internalconnecting surfaces, both in the fully cohesive phase and in the delamination one. Generally, in order tocatch discontinuous displacement fields, internal connecting surfaces (adhesive layers) are modelled bymeans of interface elements, which connect, node by node, the meshes of the joined bodies, requiringthe mesh to be conforming to the geometry of the single bodies and to the relevant connecting surface.In the present paper, the Extended Finite Element Method (XFEM) is employed to model, both fromthe geometrical and from the kinematical point of view, the whole domain, including the connectedbodies and the joining surface. The joining surface is not discretized by specific finite elements, butit is defined as an internal discontinuity surface, whose spatial position inside the mesh is analyticallydefined. The proposed approach is developed for two-dimensional composite domains, formed by twoor more material portions joined together by means of a zero thickness adhesive layer. The numericalresults obtained with the proposed approach are compared with the results of the classical interfacefinite element approach. Some examples of delamination and frictional contact are proposed withlinear, circular and curvilinear adhesive layer.
2018
Settore ICAR/08 - Scienza Delle Costruzioni
Parrinello, F., Marannano, G. (2018). Cohesive delamination and frictional contact on joining surface via XFEM. AIMS MATERIALS SCIENCE, 5(1), 127-144 [10.3934/matersci.2018.1.127].
File in questo prodotto:
File Dimensione Formato  
Parrinello Marannano MaterSci-05-01-127.pdf

accesso aperto

Descrizione: Articolo completo
Tipologia: Versione Editoriale
Dimensione 1.03 MB
Formato Adobe PDF
1.03 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/280036
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 8
social impact