We investigated whether autonomic nervous system imbalance imposed by pharmacological blockades and associated with acute myocardial infarction (AMI) is manifested as modifications of the nonlinear interactions in heart rate variability signal using a statistically based bispectrum method. The statistically based bispectrum method is an ideal approach for identifying nonlinear couplings in a system and overcomes the previous limitation of determining in an ad hoc way the presence of such interactions. Using the improved bispectrum method, we found significant nonlinear interactions in healthy young subjects, which were abolished by the administration of atropine but were still present after propranolol administration. The complete decoupling of nonlinear interactions was obtained with double pharmacological blockades. Nonlinear couplings were found to be the strongest for healthy young subjects followed by degradation with old age and a complete absence of such couplings for the old age-matched AMI subjects. Our results suggest that the presence of nonlinear couplings is largely driven by the parasympathetic nervous system regulation and that the often-reported autonomic nervous system imbalance seen in AMI subjects is manifested as the absence of nonlinear interactions between the sympathetic and parasympathetic nervous regulations.
Bai, Y., Siu, K.L., Ashraf, S., Faes, L., Nollo, G., Chon, K.H. (2008). Nonlinear coupling is absent in acute myocardial patients but not healthy subjects. AMERICAN JOURNAL OF PHYSIOLOGY. HEART AND CIRCULATORY PHYSIOLOGY, 295(2), H578-H586 [10.1152/ajpheart.00247.2008].
Nonlinear coupling is absent in acute myocardial patients but not healthy subjects
Faes, Luca;
2008-01-01
Abstract
We investigated whether autonomic nervous system imbalance imposed by pharmacological blockades and associated with acute myocardial infarction (AMI) is manifested as modifications of the nonlinear interactions in heart rate variability signal using a statistically based bispectrum method. The statistically based bispectrum method is an ideal approach for identifying nonlinear couplings in a system and overcomes the previous limitation of determining in an ad hoc way the presence of such interactions. Using the improved bispectrum method, we found significant nonlinear interactions in healthy young subjects, which were abolished by the administration of atropine but were still present after propranolol administration. The complete decoupling of nonlinear interactions was obtained with double pharmacological blockades. Nonlinear couplings were found to be the strongest for healthy young subjects followed by degradation with old age and a complete absence of such couplings for the old age-matched AMI subjects. Our results suggest that the presence of nonlinear couplings is largely driven by the parasympathetic nervous system regulation and that the often-reported autonomic nervous system imbalance seen in AMI subjects is manifested as the absence of nonlinear interactions between the sympathetic and parasympathetic nervous regulations.File | Dimensione | Formato | |
---|---|---|---|
23-Bai_AJP_2008.pdf
Solo gestori archvio
Dimensione
2.96 MB
Formato
Adobe PDF
|
2.96 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.