Physiological compensation to postural stress is weakened after long-duration water immersion (WI), thus predisposing individuals to orthostatic intolerance. This study was conducted to compare hemodynamic responses to postural stress following exposure to WI alone (Air WI), hyperbaric oxygen alone in a hyperbaric chamber (O2HC), and WI combined with hyperbaric oxygen (O2WI), all at a depth of 1.35 ATA, and to determine whether hyperbaric oxygen is protective of orthostatic tolerance. Thirty-two healthy men underwent up to 15 min of 70° head-up tilt (HUT) testing before and after a single 6-h resting exposure to Air WI (N = 10), O2HC (N = 12), or O2WI (N = 10). Heart rate (HR), blood pressure (BP), cardiac output (Q), stroke volume (SV), forearm blood flow (FBF), and systemic and forearm vascular resistance (SVR and FVR) were measured. Although all subjects completed HUT before Air WI, three subjects reached presyncope after Air WI exposure at 10.4, 9.4, and 6.9 min. HUT time did not change after O2WI or O2HC exposures. Compared to preexposure responses, HR increased (+10 and +17%) and systolic BP (-13 and -8%), and SV (-16 and -23%) decreased during HUT after Air WI and O2WI, respectively. In contrast, HR and SV did not change, and systolic (+5%) and diastolic BP (+10%) increased after O2HC. Q decreased (-13 and -7%) and SVR increased (+12 and +20%) after O2WI and O2HC, respectively, whereas SVR decreased (-9%) after Air WI. Opposite patterns were evident following Air WI and O2HC for FBF (-26 and +52%) and FVR (+28 and -30%). Therefore, breathing hyperbaric oxygen during WI may enhance post-WI cardiovascular compensatory responses to orthostatic stress.
Florian, J.P., Chon, K.H., Faes, L., Shykoff, B.E. (2016). Breathing 100% oxygen during water immersion improves postimmersion cardiovascular responses to orthostatic stress. PHYSIOLOGICAL REPORTS, 4(23), 1-14 [10.14814/phy2.13031].
Breathing 100% oxygen during water immersion improves postimmersion cardiovascular responses to orthostatic stress
Faes, Luca;
2016-01-01
Abstract
Physiological compensation to postural stress is weakened after long-duration water immersion (WI), thus predisposing individuals to orthostatic intolerance. This study was conducted to compare hemodynamic responses to postural stress following exposure to WI alone (Air WI), hyperbaric oxygen alone in a hyperbaric chamber (O2HC), and WI combined with hyperbaric oxygen (O2WI), all at a depth of 1.35 ATA, and to determine whether hyperbaric oxygen is protective of orthostatic tolerance. Thirty-two healthy men underwent up to 15 min of 70° head-up tilt (HUT) testing before and after a single 6-h resting exposure to Air WI (N = 10), O2HC (N = 12), or O2WI (N = 10). Heart rate (HR), blood pressure (BP), cardiac output (Q), stroke volume (SV), forearm blood flow (FBF), and systemic and forearm vascular resistance (SVR and FVR) were measured. Although all subjects completed HUT before Air WI, three subjects reached presyncope after Air WI exposure at 10.4, 9.4, and 6.9 min. HUT time did not change after O2WI or O2HC exposures. Compared to preexposure responses, HR increased (+10 and +17%) and systolic BP (-13 and -8%), and SV (-16 and -23%) decreased during HUT after Air WI and O2WI, respectively. In contrast, HR and SV did not change, and systolic (+5%) and diastolic BP (+10%) increased after O2HC. Q decreased (-13 and -7%) and SVR increased (+12 and +20%) after O2WI and O2HC, respectively, whereas SVR decreased (-9%) after Air WI. Opposite patterns were evident following Air WI and O2HC for FBF (-26 and +52%) and FVR (+28 and -30%). Therefore, breathing hyperbaric oxygen during WI may enhance post-WI cardiovascular compensatory responses to orthostatic stress.File | Dimensione | Formato | |
---|---|---|---|
72-Florian-PhysiologicalReports-2016.pdf
accesso aperto
Dimensione
317.5 kB
Formato
Adobe PDF
|
317.5 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.