In mammals, xanthine oxidase (E.C. 1.17.3.2) catalyzes the hydroxylation of a wide variety of heterocyclic substrates such as purines, pyrimidines, and pterins, in addition to aldehydes [1] as all-trans-retinaldehyde [2–5]. Here, we show that buttermilk xanthine oxidase was capable to oxidizing all-trans-retinol (t-ROL) to all-trans-retinaldehyde (t-RAL) that was successively oxidized to all-trans-retinoic acid (t-RA). A rise in the enzyme activity, when t-ROL-CRBP complex was assayed, with respect to the free t-ROL, was observed. Furthermore, treatment of the enzyme with Na2S and glutathione resulted in a significant increment in catalytic activity toward t-ROL and t-RAL, due to the reconstitution of the native structural organization of the molybdenum centre of molybdopterin cofactor of the desulfo form of xanthine oxidase.
TAIBI G, NICOTRA CMA (2007). Xanthine Oxidase Catalyzes the Oxidation of Retinol. JOURNAL OF ENZYME INHIBITION AND MEDICINAL CHEMISTRY, 22(4), 471-476 [10.1080/14756360701408739].
Xanthine Oxidase Catalyzes the Oxidation of Retinol
TAIBI, Gennaro;NICOTRA, Concetta
2007-01-01
Abstract
In mammals, xanthine oxidase (E.C. 1.17.3.2) catalyzes the hydroxylation of a wide variety of heterocyclic substrates such as purines, pyrimidines, and pterins, in addition to aldehydes [1] as all-trans-retinaldehyde [2–5]. Here, we show that buttermilk xanthine oxidase was capable to oxidizing all-trans-retinol (t-ROL) to all-trans-retinaldehyde (t-RAL) that was successively oxidized to all-trans-retinoic acid (t-RA). A rise in the enzyme activity, when t-ROL-CRBP complex was assayed, with respect to the free t-ROL, was observed. Furthermore, treatment of the enzyme with Na2S and glutathione resulted in a significant increment in catalytic activity toward t-ROL and t-RAL, due to the reconstitution of the native structural organization of the molybdenum centre of molybdopterin cofactor of the desulfo form of xanthine oxidase.File | Dimensione | Formato | |
---|---|---|---|
10447_27353.pdf
Solo gestori archvio
Tipologia:
Versione Editoriale
Dimensione
331.52 kB
Formato
Adobe PDF
|
331.52 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.