With the aim of studying the effect of water dynamics on the properties of biological systems, in this paper, we present a quasi-elastic neutron scattering study on three different types of living cells, differing both in their morphological and tumor properties. The measured scattering signal, which essentially originates from hydrogen atoms present in the investigated systems, has been analyzed using a global fitting strategy using an optimized theoretical model that considers various classes of hydrogen atoms and allows disentangling diffusive and rotational motions. The approach has been carefully validated by checking the reliability of the calculation of parameters and their 99% confidence intervals. We demonstrate that quasi-elastic neutron scattering is a suitable experimental technique to characterize the dynamics of intracellular water in the angstrom/picosecond space/time scale and to investigate the effect of water dynamics on cellular biodiversity.

Piazza, I., Cupane, A., Barbier, E.L., Rome, C., Collomb, N., Ollivier, J., et al. (2018). Dynamical properties of water in living cells. FRONTIERS OF PHYSICS, 13(1) [10.1007/s11467-017-0731-5].

Dynamical properties of water in living cells

Piazza, Irina;Cupane, Antonio;Natali, Francesca
2018-01-01

Abstract

With the aim of studying the effect of water dynamics on the properties of biological systems, in this paper, we present a quasi-elastic neutron scattering study on three different types of living cells, differing both in their morphological and tumor properties. The measured scattering signal, which essentially originates from hydrogen atoms present in the investigated systems, has been analyzed using a global fitting strategy using an optimized theoretical model that considers various classes of hydrogen atoms and allows disentangling diffusive and rotational motions. The approach has been carefully validated by checking the reliability of the calculation of parameters and their 99% confidence intervals. We demonstrate that quasi-elastic neutron scattering is a suitable experimental technique to characterize the dynamics of intracellular water in the angstrom/picosecond space/time scale and to investigate the effect of water dynamics on cellular biodiversity.
2018
Settore FIS/07 - Fisica Applicata(Beni Culturali, Ambientali, Biol.e Medicin)
Piazza, I., Cupane, A., Barbier, E.L., Rome, C., Collomb, N., Ollivier, J., et al. (2018). Dynamical properties of water in living cells. FRONTIERS OF PHYSICS, 13(1) [10.1007/s11467-017-0731-5].
File in questo prodotto:
File Dimensione Formato  
Piazza et al_FrontPhys_2018.pdf

Solo gestori archvio

Dimensione 4.84 MB
Formato Adobe PDF
4.84 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/267052
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact