We study sufficient conditions for existence of solutions to the global optimization problem min(x is an element of A) d(x, fx), where A, B are nonempty subsets of a metric space (X, d) and f : A -> B belongs to the class of proximal simulative contraction mappings. Our results unify, improve and generalize various comparable results in the existing literature on this topic. As an application of the obtained theorems, we give some solvability theorems of a variational inequality problem.

Abbas, M., Suleiman, Y., Vetro, C. (2017). A simulation function approach for best proximity point and variational inequality problems. MISKOLC MATHEMATICAL NOTES, 18(1), 3-16 [10.18514/MMN.2017.2015].

A simulation function approach for best proximity point and variational inequality problems

C. Vetro
2017-01-01

Abstract

We study sufficient conditions for existence of solutions to the global optimization problem min(x is an element of A) d(x, fx), where A, B are nonempty subsets of a metric space (X, d) and f : A -> B belongs to the class of proximal simulative contraction mappings. Our results unify, improve and generalize various comparable results in the existing literature on this topic. As an application of the obtained theorems, we give some solvability theorems of a variational inequality problem.
2017
Settore MAT/05 - Analisi Matematica
Abbas, M., Suleiman, Y., Vetro, C. (2017). A simulation function approach for best proximity point and variational inequality problems. MISKOLC MATHEMATICAL NOTES, 18(1), 3-16 [10.18514/MMN.2017.2015].
File in questo prodotto:
File Dimensione Formato  
2017_MMN_AbbasSuleimanVetro.pdf

Solo gestori archvio

Descrizione: Articolo principale
Dimensione 1.02 MB
Formato Adobe PDF
1.02 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/265021
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact