The aim of this paper is to present a new point of view that makes it possible to give a statistical interpretation of the traditional latent semantic analysis (LSA) paradigm based on the truncated singular value decomposition (TSVD) technique. We show how the TSVD can be interpreted as a statistical estimator derived from the LSA co-occurrence relationship matrix by mapping probability distributions on Riemanian manifolds. Besides, the quality of the estimator model can be expressed by introducing a figure of merit arising from the Solomonoff approach. This figure of merit takes into account both the adherence to the sample data and the simplicity of the model. In our model, the simplicity parameter of the proposed figure of merit depends on the number of the singular values retained after the truncation process, while the TSVD estimator, according to the Hellinger distance, guarantees the minimal distance between the sample probability distribution and the inferred probabilistic model.
Giovanni, P., Giorgio, V. (2015). TSVD as a Statistical Estimator in the Latent Semantic Analysis Paradigm. IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 3(2), 185-192 [10.1109/TETC.2014.2385594].
TSVD as a Statistical Estimator in the Latent Semantic Analysis Paradigm
Giorgio Vassallo
2015-01-01
Abstract
The aim of this paper is to present a new point of view that makes it possible to give a statistical interpretation of the traditional latent semantic analysis (LSA) paradigm based on the truncated singular value decomposition (TSVD) technique. We show how the TSVD can be interpreted as a statistical estimator derived from the LSA co-occurrence relationship matrix by mapping probability distributions on Riemanian manifolds. Besides, the quality of the estimator model can be expressed by introducing a figure of merit arising from the Solomonoff approach. This figure of merit takes into account both the adherence to the sample data and the simplicity of the model. In our model, the simplicity parameter of the proposed figure of merit depends on the number of the singular values retained after the truncation process, while the TSVD estimator, according to the Hellinger distance, guarantees the minimal distance between the sample probability distribution and the inferred probabilistic model.File | Dimensione | Formato | |
---|---|---|---|
06995958.pdf
accesso aperto
Tipologia:
Versione Editoriale
Dimensione
2.4 MB
Formato
Adobe PDF
|
2.4 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.