We consider a parametric semilinear elliptic equation with a Cara-theodory reaction which exhibits competing nonlinearities. It is "concave" (sub-linear) near the origin and "convex" (superlinear) or linear near $+\infty$. Using variational methods based on the critical point theory, coupled with suitable truncation and comparison techniques, we prove a bifurcation-type theorem, describing the set of positive solutions as the parameter varies.

Barletta, G., Livrea, R., Papageorgiou, N. (2016). Bifurcation phenomena for the positive solutions of semilinear elliptic problems with mixed boundary conditions. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 17(8), 1497-1516.

Bifurcation phenomena for the positive solutions of semilinear elliptic problems with mixed boundary conditions

Livrea, R.;
2016

Abstract

We consider a parametric semilinear elliptic equation with a Cara-theodory reaction which exhibits competing nonlinearities. It is "concave" (sub-linear) near the origin and "convex" (superlinear) or linear near $+\infty$. Using variational methods based on the critical point theory, coupled with suitable truncation and comparison techniques, we prove a bifurcation-type theorem, describing the set of positive solutions as the parameter varies.
http://www.ybook.co.jp/online2/jncav17-8.html
Barletta, G., Livrea, R., Papageorgiou, N. (2016). Bifurcation phenomena for the positive solutions of semilinear elliptic problems with mixed boundary conditions. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 17(8), 1497-1516.
File in questo prodotto:
File Dimensione Formato  
jncav17n8bar-modified.pdf

Solo gestori archvio

Descrizione: Articolo principale
Dimensione 160.61 kB
Formato Adobe PDF
160.61 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/258611
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact