We consider aseminonlinear Neumann problem driven by the p- Laplacian plus an indenite and unbounded potential. The reaction of the problem is resonant at $\pm\infty$ with respect to the higher parts of the spectrum. Using critical point theory, truncation and perturbation techniques, Morse theory and the reduction method, we prove two multiplicity theorems. One produces three nontrivial smooth solutions and the second four nontrivial smooth solutions.
Barletta, G., Livrea, R., & Papageorgiou, N. (2015). Resonant neumann equations with indefinite linear part. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 45(2), 469-491.
Data di pubblicazione: | 2015 |
Titolo: | Resonant neumann equations with indefinite linear part |
Autori: | |
Citazione: | Barletta, G., Livrea, R., & Papageorgiou, N. (2015). Resonant neumann equations with indefinite linear part. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 45(2), 469-491. |
Rivista: | |
Abstract: | We consider aseminonlinear Neumann problem driven by the p- Laplacian plus an indenite and unbounded potential. The reaction of the problem is resonant at $\pm\infty$ with respect to the higher parts of the spectrum. Using critical point theory, truncation and perturbation techniques, Morse theory and the reduction method, we prove two multiplicity theorems. One produces three nontrivial smooth solutions and the second four nontrivial smooth solutions. |
URL: | https://www.tmna.ncu.pl/static/published/2015/v45n2-08.pdf |
Appare nelle tipologie: | 1.01 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
v45n2-08.pdf | Articolo principale | N/A | Administrator Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.