In this note we propose a variational approach to a parametric differential problem where a prescribed mean curvature equation is considered. In particular, without asymptotic assumptions at zero and at infinity on the potential, we obtain an explicit positive interval of parameters for which the problem under examination has at least one nontrivial and nonnegative solution.

Bonanno, G., Livrea, R., Mawhin, J. (2015). Existence results for parametric boundary value problems involving the mean curvature operator. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 22(3), 411-426 [10.1007/s00030-014-0289-7].

Existence results for parametric boundary value problems involving the mean curvature operator

Livrea, Roberto;
2015

Abstract

In this note we propose a variational approach to a parametric differential problem where a prescribed mean curvature equation is considered. In particular, without asymptotic assumptions at zero and at infinity on the potential, we obtain an explicit positive interval of parameters for which the problem under examination has at least one nontrivial and nonnegative solution.
http://www.link.springer.de/link/service/journals/00030/about.htm
Bonanno, G., Livrea, R., Mawhin, J. (2015). Existence results for parametric boundary value problems involving the mean curvature operator. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 22(3), 411-426 [10.1007/s00030-014-0289-7].
File in questo prodotto:
File Dimensione Formato  
Versione Online BonLivMaw-NoDEA.pdf

Solo gestori archvio

Descrizione: Articolo principale
Dimensione 376.87 kB
Formato Adobe PDF
376.87 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
258599_Livrea.pdf

accesso aperto

Tipologia: Post-print
Dimensione 299.08 kB
Formato Adobe PDF
299.08 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/258599
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact