We study a parametric nonlinear periodic problem driven by the scalar p-Laplacian. We show that if $\hat\lambda_1> 0$ is the first eigenvalue of the periodic scalar p-Laplacian and $\lambda>\hat\lambda_1$, then the problem has at least three nontrivial solutions one positive, one negative and the third nodal. Our approach is variational together with suitable truncation, perturbation and comparison techniques.
Barletta, G., Livrea, R., Papageorgiou, N. (2014). A nonlinear eigenvalue problem for the periodic scalar p-Laplacian. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 13(3), 1075-1086 [10.3934/cpaa.2014.13.1075].
A nonlinear eigenvalue problem for the periodic scalar p-Laplacian
Livrea, Roberto;
2014-01-01
Abstract
We study a parametric nonlinear periodic problem driven by the scalar p-Laplacian. We show that if $\hat\lambda_1> 0$ is the first eigenvalue of the periodic scalar p-Laplacian and $\lambda>\hat\lambda_1$, then the problem has at least three nontrivial solutions one positive, one negative and the third nodal. Our approach is variational together with suitable truncation, perturbation and comparison techniques.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
CPAA1007FinalTexFile.pdf
Solo gestori archvio
Descrizione: Articolo principale
Dimensione
346.66 kB
Formato
Adobe PDF
|
346.66 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.