We study the existence of nontrivial solutions of parameter-dependent quasilinear elliptic Dirichlet problems of the form $-\Delta u = \lambda f(u)$ in $\Omega$, $u = 0$ on $\partial\Omega$, in a bounded domain $\Omega$ with sufficiently smooth boundary, where $\lambda$ is a real parameter and $\Delta_p$ denotes the p-Laplacian. Recently the authors obtained multiplicity results by employing an abstract localization principle of critical points of functional of the form $\Phi-\lambda\Psi$ on open subleveis of $\Phi$, i.e., of sets of the form $\Phi^{-1}(-\infty,r)$, combined with differential inequality techniques and topological arguments. Unlike in those recent papers by the authors, the approach in this paper is based on pseudomonotone operator theory and fixed point techniques. The obtained results are compared with those obtained via the abstract variational principle. Moreover, by applying truncation techniques and regularity results we are able to deal with elliptic problems that involve discontinuous nonlinearities without making use of nonsmooth analysis methods. ©Dynamic Publishers, Inc.
Candito, P., Carl, S., Livrea, R. (2013). Variational versus pseudomonotone operator approach in parameter-dependent nonlinear elliptic problems. DYNAMIC SYSTEMS AND APPLICATIONS, 22(2-3), 397-410.
Variational versus pseudomonotone operator approach in parameter-dependent nonlinear elliptic problems
Livrea, R.
2013-01-01
Abstract
We study the existence of nontrivial solutions of parameter-dependent quasilinear elliptic Dirichlet problems of the form $-\Delta u = \lambda f(u)$ in $\Omega$, $u = 0$ on $\partial\Omega$, in a bounded domain $\Omega$ with sufficiently smooth boundary, where $\lambda$ is a real parameter and $\Delta_p$ denotes the p-Laplacian. Recently the authors obtained multiplicity results by employing an abstract localization principle of critical points of functional of the form $\Phi-\lambda\Psi$ on open subleveis of $\Phi$, i.e., of sets of the form $\Phi^{-1}(-\infty,r)$, combined with differential inequality techniques and topological arguments. Unlike in those recent papers by the authors, the approach in this paper is based on pseudomonotone operator theory and fixed point techniques. The obtained results are compared with those obtained via the abstract variational principle. Moreover, by applying truncation techniques and regularity results we are able to deal with elliptic problems that involve discontinuous nonlinearities without making use of nonsmooth analysis methods. ©Dynamic Publishers, Inc.File | Dimensione | Formato | |
---|---|---|---|
DSALAK16.pdf
Solo gestori archvio
Descrizione: Articolo principale
Dimensione
334.06 kB
Formato
Adobe PDF
|
334.06 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.