The existence of bounded Palais-Smale sequences (briefly BPS) for functionals depending on a parameter belonging to a real interval and which are the sum of a locally Lipschitz continuous term and of a convex, proper, lower semicontinuous function, is obtained when the parameter runs in a full measure subset of the given interval. Specifically, for this class of non-smooth functions, we obtain BPS related to mountain pass and to global infima levels. This is done by developing a unifying approach, which applies to both cases and relies on a suitable deformation lemma. © 2011 Elsevier Ltd. All rights reserved.

Candito, P., Livrea, R., & Motreanu, D. (2011). Bounded Palais-Smale sequences for non-differentiable functions. NONLINEAR ANALYSIS, 74(16), 5446-5454 [10.1016/j.na.2011.05.030].

Bounded Palais-Smale sequences for non-differentiable functions

Livrea, R.;Motreanu, D.
2011

Abstract

The existence of bounded Palais-Smale sequences (briefly BPS) for functionals depending on a parameter belonging to a real interval and which are the sum of a locally Lipschitz continuous term and of a convex, proper, lower semicontinuous function, is obtained when the parameter runs in a full measure subset of the given interval. Specifically, for this class of non-smooth functions, we obtain BPS related to mountain pass and to global infima levels. This is done by developing a unifying approach, which applies to both cases and relies on a suitable deformation lemma. © 2011 Elsevier Ltd. All rights reserved.
Candito, P., Livrea, R., & Motreanu, D. (2011). Bounded Palais-Smale sequences for non-differentiable functions. NONLINEAR ANALYSIS, 74(16), 5446-5454 [10.1016/j.na.2011.05.030].
File in questo prodotto:
File Dimensione Formato  
NA_9048.pdf

Solo gestori archvio

Descrizione: Articolo principale
Dimensione 461.42 kB
Formato Adobe PDF
461.42 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10447/258508
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact