A general critical point result established by Ghoussoub is extended to the case of locally Lipschitz continuous functions satisfying a weak Palais-Smale hypothesis, which includes the so-called non-smooth Cerami condition. Some special cases are then pointed out.

Livrea, R., Marano, S. (2009). A min-max principle for non-differentiable functions with a weak compactness condition. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 8(3), 1019-1029 [10.3934/cpaa.2009.8.1019].

A min-max principle for non-differentiable functions with a weak compactness condition

Livrea, Roberto;Marano, Salvatore A.
2009

Abstract

A general critical point result established by Ghoussoub is extended to the case of locally Lipschitz continuous functions satisfying a weak Palais-Smale hypothesis, which includes the so-called non-smooth Cerami condition. Some special cases are then pointed out.
Livrea, R., Marano, S. (2009). A min-max principle for non-differentiable functions with a weak compactness condition. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 8(3), 1019-1029 [10.3934/cpaa.2009.8.1019].
File in questo prodotto:
File Dimensione Formato  
WeakPS-CPAA.pdf

Solo gestori archvio

Descrizione: Articolo principale
Dimensione 183.46 kB
Formato Adobe PDF
183.46 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/258498
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 9
social impact