A classical critical point theorem in presence of splitting established by Brézis-Nirenberg is extended to functionals which are the sum of a locally Lipschitz continuous term and of a convex, proper, lower semicontinuous function. The obtained result is then exploited to prove a multiplicity theorem for a family of elliptic variational-hemivariational eigenvalue problems. © 2005 Elsevier Inc. All rights reserved.

Livrea, R., Marano, S., Motreanu, D. (2006). Critical points for nondifferentiable functions in presence of splitting. JOURNAL OF DIFFERENTIAL EQUATIONS, 226(2), 704-725 [10.1016/j.jde.2005.11.001].

Critical points for nondifferentiable functions in presence of splitting

Livrea, R.;Marano, S. A.;Motreanu, D.
2006

Abstract

A classical critical point theorem in presence of splitting established by Brézis-Nirenberg is extended to functionals which are the sum of a locally Lipschitz continuous term and of a convex, proper, lower semicontinuous function. The obtained result is then exploited to prove a multiplicity theorem for a family of elliptic variational-hemivariational eigenvalue problems. © 2005 Elsevier Inc. All rights reserved.
Livrea, R., Marano, S., Motreanu, D. (2006). Critical points for nondifferentiable functions in presence of splitting. JOURNAL OF DIFFERENTIAL EQUATIONS, 226(2), 704-725 [10.1016/j.jde.2005.11.001].
File in questo prodotto:
File Dimensione Formato  
JDE-2006-Online.pdf

Solo gestori archvio

Dimensione 191.2 kB
Formato Adobe PDF
191.2 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/258478
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact