A general min-max principle established by Ghoussoub is extended to the case of functionals which are the sum of a locally Lipschitz continuous term and of a convex, proper, lower semicontinuous function. Some topological properties of the min-max-generated critical points in such a framework are then pointed out.

Livrea, R., Marano, S. (2004). Existence and classification of critical points for nondifferentiable functions. ADVANCES IN DIFFERENTIAL EQUATIONS, 9(9-10), 961-978.

Existence and classification of critical points for nondifferentiable functions

Livrea, Roberto;Marano, Salvatore A.
2004

Abstract

A general min-max principle established by Ghoussoub is extended to the case of functionals which are the sum of a locally Lipschitz continuous term and of a convex, proper, lower semicontinuous function. Some topological properties of the min-max-generated critical points in such a framework are then pointed out.
http://projecteuclid.org/download/pdf_1/euclid.ade/1355867910
Livrea, R., Marano, S. (2004). Existence and classification of critical points for nondifferentiable functions. ADVANCES IN DIFFERENTIAL EQUATIONS, 9(9-10), 961-978.
File in questo prodotto:
File Dimensione Formato  
livrea-marano1.pdf

Solo gestori archvio

Dimensione 183.21 kB
Formato Adobe PDF
183.21 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/258464
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 25
social impact