We consider a parametric Robin problem driven by the p-Laplacian with an indefinite potential and with a superlinear reaction term which does not satisfy the Ambrosetti-Rabinowitz condition. We look for positive solutions. We prove a bifurcation-type theorem describing the nonexistence, existence and multiplicity of positive solutions as the parameter varies. We also show the existence of a minimal positive solution u_λ and establish the monotonicity and continuity of the map λ → u _λ.

Averna, D., Papageorgiou, N., Tornatore, E. (2017). Positive solutions for nonlinear Robin problems. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 1-25.

Positive solutions for nonlinear Robin problems

D. Averna;E. Tornatore
2017-01-01

Abstract

We consider a parametric Robin problem driven by the p-Laplacian with an indefinite potential and with a superlinear reaction term which does not satisfy the Ambrosetti-Rabinowitz condition. We look for positive solutions. We prove a bifurcation-type theorem describing the nonexistence, existence and multiplicity of positive solutions as the parameter varies. We also show the existence of a minimal positive solution u_λ and establish the monotonicity and continuity of the map λ → u _λ.
2017
Averna, D., Papageorgiou, N., Tornatore, E. (2017). Positive solutions for nonlinear Robin problems. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 1-25.
File in questo prodotto:
File Dimensione Formato  
Averna_Papageorgiou_Tornatore.pdf

accesso aperto

Dimensione 341.85 kB
Formato Adobe PDF
341.85 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/253943
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 0
social impact