Non-alcoholic fatty liver disease (NAFLD) confers an increased risk of cardiovascular diseases. NAFDL is associated with atherogenic dyslipidemia, inflammation and renin-angiotensin system (RAS) imbalance, which in turn lead to atherosclerotic lesions. In the present study, the impact of a natural dietary supplement (NDS) containing Curcuma longa, silymarin, guggul, chlorogenic acid and inulin on NAFLD and atherosclerosis was evaluated, and the mechanism of action was examined. C57BL/6 mice were fed an HFD for 16 weeks; half of the mice were simultaneously treated with a daily oral administration (os) of the NDS. NAFLD and atherogenic lesions in aorta and carotid artery (histological analysis), hepatic expression of genes involved in the NAFLD (PCR array), hepatic angiotensinogen (AGT) and AT1R mRNA expression (real-time PCR) and plasma angiotensin (ANG)-II levels (ELISA) were evaluated. In the NDS group, steatosis, aortic lesions or carotid artery thickening was not observed. PCR array showed upregulation of some genes involved in lipid metabolism and anti-inflammatory activity (Cpt2, Ifng) and downregulation of some genes involved in pro-inflammatory response and in free fatty acid up-take (Fabp5, Socs3). Hepatic AGT, AT1R mRNA and ANG II plasma levels were significantly lower with respect to the untreated-group. Furthermore, NDS inhibited the dyslipidemia observed in the untreated animals. Altogether, these results suggest that NDS prevents NAFLD and atherogenesis by modulating the expression of different genes involved in NAFLD and avoiding RAS imbalance.

Amato, A., Caldara, G., Nuzzo, D., Baldassano, S., Picone, P., Rizzo, M., et al. (2017). NAFLD and Atherosclerosis Are Prevented by a Natural Dietary Supplement Containing Curcumin, Silymarin, Guggul, Chlorogenic Acid and Inulin in Mice Fed a High-Fat Diet. NUTRIENTS, 9(5), 1-13 [10.3390/nu9050492].

NAFLD and Atherosclerosis Are Prevented by a Natural Dietary Supplement Containing Curcumin, Silymarin, Guggul, Chlorogenic Acid and Inulin in Mice Fed a High-Fat Diet

Amato A
;
Caldara GF;Nuzzo D;Baldassano S;Picone P;Rizzo M;Mulè F;Di Carlo M.
2017-05-13

Abstract

Non-alcoholic fatty liver disease (NAFLD) confers an increased risk of cardiovascular diseases. NAFDL is associated with atherogenic dyslipidemia, inflammation and renin-angiotensin system (RAS) imbalance, which in turn lead to atherosclerotic lesions. In the present study, the impact of a natural dietary supplement (NDS) containing Curcuma longa, silymarin, guggul, chlorogenic acid and inulin on NAFLD and atherosclerosis was evaluated, and the mechanism of action was examined. C57BL/6 mice were fed an HFD for 16 weeks; half of the mice were simultaneously treated with a daily oral administration (os) of the NDS. NAFLD and atherogenic lesions in aorta and carotid artery (histological analysis), hepatic expression of genes involved in the NAFLD (PCR array), hepatic angiotensinogen (AGT) and AT1R mRNA expression (real-time PCR) and plasma angiotensin (ANG)-II levels (ELISA) were evaluated. In the NDS group, steatosis, aortic lesions or carotid artery thickening was not observed. PCR array showed upregulation of some genes involved in lipid metabolism and anti-inflammatory activity (Cpt2, Ifng) and downregulation of some genes involved in pro-inflammatory response and in free fatty acid up-take (Fabp5, Socs3). Hepatic AGT, AT1R mRNA and ANG II plasma levels were significantly lower with respect to the untreated-group. Furthermore, NDS inhibited the dyslipidemia observed in the untreated animals. Altogether, these results suggest that NDS prevents NAFLD and atherogenesis by modulating the expression of different genes involved in NAFLD and avoiding RAS imbalance.
Settore BIO/09 - Fisiologia
https://www.mdpi.com/2072-6643/9/5/492
Amato, A., Caldara, G., Nuzzo, D., Baldassano, S., Picone, P., Rizzo, M., et al. (2017). NAFLD and Atherosclerosis Are Prevented by a Natural Dietary Supplement Containing Curcumin, Silymarin, Guggul, Chlorogenic Acid and Inulin in Mice Fed a High-Fat Diet. NUTRIENTS, 9(5), 1-13 [10.3390/nu9050492].
File in questo prodotto:
File Dimensione Formato  
nutrients-2017.pdf

accesso aperto

Descrizione: full text
Tipologia: Versione Editoriale
Dimensione 2.09 MB
Formato Adobe PDF
2.09 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10447/253125
Citazioni
  • ???jsp.display-item.citation.pmc??? 19
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 42
social impact