Naturally acidified environments, such as CO2 vents, are important sites to evaluate the potential effects of increased ocean acidification on marine ecosystems and biota. Here we assessed the effect of high CO2/low pH on otolith shape and chemical composition of six coastal fish species (Chromis chromis, Coris julis, Diplodus vulgaris, Gobius bucchichi, Sarpa salpa, Symphodus ocellatus) in a Mediterranean shallow CO2 vent. Taking into consideration the major and trace elements found near the vent and the gradient of dissolved inorganic carbon, we compared the otolith chemical signatures of fish exposed long-term to elevated CO2 emissions and reduced pH (mean pH 7.8) against fish living in two control sites (mean pH 8.2). A number of element:Ca ratios (Na:Ca, Mg:Ca, Mn:Ca, Cu:Ca, Zn:Ca, Sr:Ca, Ba:Ca and Pb:Ca), along with isotope ratios, were measured in otoliths (δ13C and δ18O) and water (δ13CDIC) samples. Additionally, we performed otolith outline shape and morphometric analysis to evaluate the effect of high CO2/low pH. We observed species-specific responses with regards to both shape and chemical signatures. Significant differences among sites were found in otolith shape (elliptical Fourier descriptors) of G. bucchichi and D. vulgaris. Elemental and isotopic signatures were also significantly different in these site attached species, though not for the other four. Overall, the carbon isotopic composition seems a good proxy to follow pH gradient in naturally acidified area. Ultimately, besides improving our knowledge of the effects of high CO2/low pH on otoliths, the present results contribute to our understanding on their use as natural tags.

Mirasole, A., Gillanders, B., Reis-Santos, P., Grassa, F., Capasso, G., Scopelliti, G., et al. (2017). The influence of high pCO2 on otolith shape, chemical and carbon isotope composition of six coastal fish species in a Mediterranean shallow CO2 vent. MARINE BIOLOGY, 164(9) [10.1007/s00227-017-3221-y].

The influence of high pCO2 on otolith shape, chemical and carbon isotope composition of six coastal fish species in a Mediterranean shallow CO2 vent

Mirasole, Alice
;
GRASSA, Fausto;CAPASSO, Giorgio;SCOPELLITI, Giovanna;MAZZOLA, Antonio;VIZZINI, Salvatrice
2017-01-01

Abstract

Naturally acidified environments, such as CO2 vents, are important sites to evaluate the potential effects of increased ocean acidification on marine ecosystems and biota. Here we assessed the effect of high CO2/low pH on otolith shape and chemical composition of six coastal fish species (Chromis chromis, Coris julis, Diplodus vulgaris, Gobius bucchichi, Sarpa salpa, Symphodus ocellatus) in a Mediterranean shallow CO2 vent. Taking into consideration the major and trace elements found near the vent and the gradient of dissolved inorganic carbon, we compared the otolith chemical signatures of fish exposed long-term to elevated CO2 emissions and reduced pH (mean pH 7.8) against fish living in two control sites (mean pH 8.2). A number of element:Ca ratios (Na:Ca, Mg:Ca, Mn:Ca, Cu:Ca, Zn:Ca, Sr:Ca, Ba:Ca and Pb:Ca), along with isotope ratios, were measured in otoliths (δ13C and δ18O) and water (δ13CDIC) samples. Additionally, we performed otolith outline shape and morphometric analysis to evaluate the effect of high CO2/low pH. We observed species-specific responses with regards to both shape and chemical signatures. Significant differences among sites were found in otolith shape (elliptical Fourier descriptors) of G. bucchichi and D. vulgaris. Elemental and isotopic signatures were also significantly different in these site attached species, though not for the other four. Overall, the carbon isotopic composition seems a good proxy to follow pH gradient in naturally acidified area. Ultimately, besides improving our knowledge of the effects of high CO2/low pH on otoliths, the present results contribute to our understanding on their use as natural tags.
2017
Mirasole, A., Gillanders, B., Reis-Santos, P., Grassa, F., Capasso, G., Scopelliti, G., et al. (2017). The influence of high pCO2 on otolith shape, chemical and carbon isotope composition of six coastal fish species in a Mediterranean shallow CO2 vent. MARINE BIOLOGY, 164(9) [10.1007/s00227-017-3221-y].
File in questo prodotto:
File Dimensione Formato  
2017 MarBiol - Mirasole et al.pdf

Solo gestori archvio

Descrizione: Articolo principale
Tipologia: Versione Editoriale
Dimensione 1.84 MB
Formato Adobe PDF
1.84 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/252931
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 17
social impact