The purpose of this article is to compute a global minimizer of the function x to d(x, Tx) , where T is a proximal cyclic contraction in the framework of a best proximally complete space, thereby ensuring the existence of an optimal approximate solution, called a best proximity point, to the equation Tx= x when T is not necessarily a self-mapping.
Basha, S., Shahzad, N., Vetro, C. (2017). Best proximity point theorems for proximal cyclic contractions. JOURNAL OF FIXED POINT THEORY AND ITS APPLICATIONS, 19(4), 2647-2661 [10.1007/s11784-017-0447-8].
Best proximity point theorems for proximal cyclic contractions
Vetro, C.
2017-01-01
Abstract
The purpose of this article is to compute a global minimizer of the function x to d(x, Tx) , where T is a proximal cyclic contraction in the framework of a best proximally complete space, thereby ensuring the existence of an optimal approximate solution, called a best proximity point, to the equation Tx= x when T is not necessarily a self-mapping.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2017_JFPTA_BashaShahzadVetro.pdf
Solo gestori archvio
Descrizione: Articolo principale
Dimensione
435.45 kB
Formato
Adobe PDF
|
435.45 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.