The development of more sensitive diagnostic tools allowing an early-stage and highly efficient medical imaging of tumors remains a challenge. Magnetic nanoparticles seem to be the contrast agents with the highest potential, if properly constructed. Therefore, in this study, hybrid magnetic nanoarchitectures were developed using a new amphiphilic inulin-based graft copolymer (INU-LAPEG-FA) as coating material for 10-nm spinel iron oxide (magnetite, Fe3O4) superparamagnetic nanoparticles (SPION). Folic acid (FA) covalently linked to the coating copolymer in order to be exposed onto the nanoparticle surface was chosen as the targeting agent because folate receptors are upregulated in many cancer types. Physicochemical characterization and in vitro biocompatibility study was then performed on the prepared magnetic nanoparticles. The improved targeting and imaging properties of the prepared FA-SPIONs were further evaluated in nude mice using 7-Tesla magnetic resonance imaging (MRI). FA-SPIONs exhibited the ability to act as efficient contrast agents in conventional MRI, providing a potential nanoplatform not only for tumor diagnosis but also for cancer treatment, through the delivery of anticancer drug or locoregional magnetic hyperthermia. [Figure not available: see fulltext.].

Scialabba, C., Puleio, R., Peddis, D., Varvaro, G., Calandra, P., Cassata, G., et al. (2017). Folate targeted coated SPIONs as efficient tool for MRI. NANO RESEARCH, 10(9), 3212-3227 [10.1007/s12274-017-1540-4].

Folate targeted coated SPIONs as efficient tool for MRI

Scialabba, Cinzia;Licciardi, Mariano
;
Giammona, Gaetano
2017-01-01

Abstract

The development of more sensitive diagnostic tools allowing an early-stage and highly efficient medical imaging of tumors remains a challenge. Magnetic nanoparticles seem to be the contrast agents with the highest potential, if properly constructed. Therefore, in this study, hybrid magnetic nanoarchitectures were developed using a new amphiphilic inulin-based graft copolymer (INU-LAPEG-FA) as coating material for 10-nm spinel iron oxide (magnetite, Fe3O4) superparamagnetic nanoparticles (SPION). Folic acid (FA) covalently linked to the coating copolymer in order to be exposed onto the nanoparticle surface was chosen as the targeting agent because folate receptors are upregulated in many cancer types. Physicochemical characterization and in vitro biocompatibility study was then performed on the prepared magnetic nanoparticles. The improved targeting and imaging properties of the prepared FA-SPIONs were further evaluated in nude mice using 7-Tesla magnetic resonance imaging (MRI). FA-SPIONs exhibited the ability to act as efficient contrast agents in conventional MRI, providing a potential nanoplatform not only for tumor diagnosis but also for cancer treatment, through the delivery of anticancer drug or locoregional magnetic hyperthermia. [Figure not available: see fulltext.].
2017
Scialabba, C., Puleio, R., Peddis, D., Varvaro, G., Calandra, P., Cassata, G., et al. (2017). Folate targeted coated SPIONs as efficient tool for MRI. NANO RESEARCH, 10(9), 3212-3227 [10.1007/s12274-017-1540-4].
File in questo prodotto:
File Dimensione Formato  
2017_Nanoresearch_9.15+.pdf

Solo gestori archvio

Descrizione: Articolo principale
Tipologia: Versione Editoriale
Dimensione 2.88 MB
Formato Adobe PDF
2.88 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/248535
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 54
social impact