Breast cancer is one of the leading causes of death from cancer among women in western countries. The different types of breast cancer are grouped into invasive and noninvasive forms. Among the invasive types, ductal infiltrating carcinoma (DIC) is the most common and aggressive form. Using an in vitro model consisting of a DIC-derived cell line (8701-BC) and a nontumoral mammary epithelial cell line (HB2), we used the proteomics approach to search for homology and differences in protein expression patterns between tumoral and nontumoral phenotypes. Within an analysis window comprising 1,750 discernible spots we have currently catalogued 140 protein spots of potential interest. Fifty-eight of them were identified by gel matching with reference maps, immunodetection, or N-terminal microsequencing and classified into four functional groups. Twelve proteins were found differentially expressed in two cell lines: four were uniquely present in the neoplastic cell proteome and eight in epithelial cells. In addition, 53 proteins displayed different relative expression levels between the two cell lines, that is, 44 were more elevated in cancer cells and 9 in HB2 cells. Among proteins with greater relative abundance in cancer cells we identified glycolytic enzymes (or their isoforms), which may indicate that the known metabolic dysregulation in cancer can reflect oncogenic-related defects of glycolytic gene expression.

Pucci-minafra, I., Fontana, S., Cancemi, P., Alaimo, G., Minafra, S. (2002). Proteomic patterns of cultured breast cancer cells and epithelial mammary cells. ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 963.

Proteomic patterns of cultured breast cancer cells and epithelial mammary cells.

Fontana S;Cancemi P;Minafra S.
2002-01-01

Abstract

Breast cancer is one of the leading causes of death from cancer among women in western countries. The different types of breast cancer are grouped into invasive and noninvasive forms. Among the invasive types, ductal infiltrating carcinoma (DIC) is the most common and aggressive form. Using an in vitro model consisting of a DIC-derived cell line (8701-BC) and a nontumoral mammary epithelial cell line (HB2), we used the proteomics approach to search for homology and differences in protein expression patterns between tumoral and nontumoral phenotypes. Within an analysis window comprising 1,750 discernible spots we have currently catalogued 140 protein spots of potential interest. Fifty-eight of them were identified by gel matching with reference maps, immunodetection, or N-terminal microsequencing and classified into four functional groups. Twelve proteins were found differentially expressed in two cell lines: four were uniquely present in the neoplastic cell proteome and eight in epithelial cells. In addition, 53 proteins displayed different relative expression levels between the two cell lines, that is, 44 were more elevated in cancer cells and 9 in HB2 cells. Among proteins with greater relative abundance in cancer cells we identified glycolytic enzymes (or their isoforms), which may indicate that the known metabolic dysregulation in cancer can reflect oncogenic-related defects of glycolytic gene expression.
2002
Settore BIO/06 - Anatomia Comparata E Citologia
Pucci-minafra, I., Fontana, S., Cancemi, P., Alaimo, G., Minafra, S. (2002). Proteomic patterns of cultured breast cancer cells and epithelial mammary cells. ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 963.
File in questo prodotto:
File Dimensione Formato  
PUCCI-MINAFRA_et_al-2002-Annals_of_the_New_York_Academy_of_Sciences.pdf

accesso aperto

Dimensione 4.53 MB
Formato Adobe PDF
4.53 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/245653
Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 50
  • ???jsp.display-item.citation.isi??? 47
social impact