Infinite-dimensional representations of Lie algebras necessarily invoke the theory of unbounded operator algebras. Starting with the familiar example of the Heisenberg Lie algebra, we sketch the essential features of this interaction, distinguishing in particular the cases of integrable and nonintegrable representations.While integrable representations are well understood, nonintegrable representations are quite mysterious objects.We present here a short and didacticalminded overview of the subject.

Trapani, C. (2017). Remarks on Infinite-Dimensional Representations of the Heisenberg Algebra. In Giovanni Falcone (a cura di), Lie Groups, Differential Equations, and Geometry, Advances and Surveys (pp. 23-40). Springer.

Remarks on Infinite-Dimensional Representations of the Heisenberg Algebra

TRAPANI, Camillo
2017-01-01

Abstract

Infinite-dimensional representations of Lie algebras necessarily invoke the theory of unbounded operator algebras. Starting with the familiar example of the Heisenberg Lie algebra, we sketch the essential features of this interaction, distinguishing in particular the cases of integrable and nonintegrable representations.While integrable representations are well understood, nonintegrable representations are quite mysterious objects.We present here a short and didacticalminded overview of the subject.
2017
Settore MAT/05 - Analisi Matematica
Trapani, C. (2017). Remarks on Infinite-Dimensional Representations of the Heisenberg Algebra. In Giovanni Falcone (a cura di), Lie Groups, Differential Equations, and Geometry, Advances and Surveys (pp. 23-40). Springer.
File in questo prodotto:
File Dimensione Formato  
estratto_libro_falcone.pdf

Solo gestori archvio

Dimensione 286.3 kB
Formato Adobe PDF
286.3 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/244285
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 2
social impact