This paper studies what happens when we move from a short regression to a long regression in a setting where both regressions are subject to misspecification. In this setup, the least-squares estimator in the long regression may have larger inconsistency than the least-squares estimator in the short regression. We provide a simple interpretation for the comparison of the inconsistencies and study under which conditions the additional regressors in the long regression represent a ‘balanced addition’ to the short regression.
De Luca, G., Magnus, J.R., Peracchi, F. (2018). Balanced variable addition in linear models. JOURNAL OF ECONOMIC SURVEYS, 32(4), 1183-1200 [10.1111/joes.12245].
Balanced variable addition in linear models
DE LUCA, GiuseppeMethodology
;
2018-01-01
Abstract
This paper studies what happens when we move from a short regression to a long regression in a setting where both regressions are subject to misspecification. In this setup, the least-squares estimator in the long regression may have larger inconsistency than the least-squares estimator in the short regression. We provide a simple interpretation for the comparison of the inconsistencies and study under which conditions the additional regressors in the long regression represent a ‘balanced addition’ to the short regression.File | Dimensione | Formato | |
---|---|---|---|
Luca_et_al-2018-Journal_of_Economic_Surveys.pdf
Solo gestori archvio
Descrizione: Articolo principale
Dimensione
424.34 kB
Formato
Adobe PDF
|
424.34 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
joes.12245.pdf
Solo gestori archvio
Tipologia:
Versione Editoriale
Dimensione
412.54 kB
Formato
Adobe PDF
|
412.54 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.