Am J Physiol Regul Integr Comp Physiol. 2005 Nov;289(5):R1496-503. Epub 2005 Jul 14. Supramaximal exercise mobilizes hematopoietic progenitors and reticulocytes in athletes. Morici G, Zangla D, Santoro A, Pelosi E, Petrucci E, Gioia M, Bonanno A, Profita M, Bellia V, Testa U, Bonsignore MR. SourceDepartment of Experimental Medicine, University of Palermo, Italy. Abstract Marathon runners show increased circulating CD34+ cell counts and postexercise release of interleukin-6 (IL-6), granulocyte-colony stimulating factor (G-CSF) and flt3-ligand (Bonsignore MR, Morici G, Santoro A, Pegano M, Cascio L, Bonnano A, Abate P, Mirabella F, Profita M, Insalaco G, Gioia M, Vignola AM, Majolino I, Testa U, and Hogg JC. J Appl Physiol 93: 1691-1697, 2002). In the present study we hypothesized that supramaximal ("all-out") exercise may acutely affect circulating progenitors and reticulocytes and investigated possible mechanisms involved. Progenitor release was measured by flow cytometry (n = 20) and clonogenic assays (n = 6) in 20 young competitive rowers (13 M, 7 F, age +/- SD: 17.1 +/- 2.1 yr, peak O2 consumption: 56.5 +/- 11.4 ml.min(-1).kg(-1)) at rest and shortly after 1,000 m "all-out." Release of reticulocytes, cortisol, muscle enzymes, neutrophil elastase, and several cytokines/growth factors was measured. Supramaximal exercise doubled circulating CD34+ cells (rest: 7.6 +/- 3.0, all-out: 16.3 +/- 9.1 cells/mul, P < 0.001), and increased immature reticulocyte fractions; AC133+ cells doubled, suggesting release of angiogenetic precursors. Erythrocyte burst forming units and colony forming units for granulocytes-monocytes and all blood series increased postexercise by 3.4-, 5.5-, and 4.8-fold, respectively (P < 0.01 for all). All-out rowing acutely increased plasma cortisol, neutrophil elastase, flt3-ligand, hepatocyte growth factor, VEGF, and transforming growth factor-beta1, and decreased erythropoietin; K-ligand, stromal-derived factor-1, IL-6, and G-CSF were unchanged. Therefore, all-out exercise is a physiological stimulus for progenitor release in athletes. Release of reticulocytes and proangiogenetic cells and mediators suggests tissue hypoxia as possibly involved in progenitor mobilization. PMID:16020520[PubMed - indexed for MEDLINE]

MORICI G, ZANGLA D, SANTORO A, PELOSI E, PETRUCCI E, GIOIA M, et al. (2005). Supramaximal exercise mobilizes haematopoietic progenitors and reticulocytes in athletes. AMERICAN JOURNAL OF PHYSIOLOGY. REGULATORY, INTEGRATIVE AND COMPARATIVE PHYSIOLOGY, 289(5), R1496-R1503 [10.​1152/​ajpregu.​00338.​2005].

Supramaximal exercise mobilizes haematopoietic progenitors and reticulocytes in athletes

MORICI, Giuseppe;ZANGLA, Daniele;BELLIA, Vincenzo;BONSIGNORE, Maria Rosaria
2005-01-01

Abstract

Am J Physiol Regul Integr Comp Physiol. 2005 Nov;289(5):R1496-503. Epub 2005 Jul 14. Supramaximal exercise mobilizes hematopoietic progenitors and reticulocytes in athletes. Morici G, Zangla D, Santoro A, Pelosi E, Petrucci E, Gioia M, Bonanno A, Profita M, Bellia V, Testa U, Bonsignore MR. SourceDepartment of Experimental Medicine, University of Palermo, Italy. Abstract Marathon runners show increased circulating CD34+ cell counts and postexercise release of interleukin-6 (IL-6), granulocyte-colony stimulating factor (G-CSF) and flt3-ligand (Bonsignore MR, Morici G, Santoro A, Pegano M, Cascio L, Bonnano A, Abate P, Mirabella F, Profita M, Insalaco G, Gioia M, Vignola AM, Majolino I, Testa U, and Hogg JC. J Appl Physiol 93: 1691-1697, 2002). In the present study we hypothesized that supramaximal ("all-out") exercise may acutely affect circulating progenitors and reticulocytes and investigated possible mechanisms involved. Progenitor release was measured by flow cytometry (n = 20) and clonogenic assays (n = 6) in 20 young competitive rowers (13 M, 7 F, age +/- SD: 17.1 +/- 2.1 yr, peak O2 consumption: 56.5 +/- 11.4 ml.min(-1).kg(-1)) at rest and shortly after 1,000 m "all-out." Release of reticulocytes, cortisol, muscle enzymes, neutrophil elastase, and several cytokines/growth factors was measured. Supramaximal exercise doubled circulating CD34+ cells (rest: 7.6 +/- 3.0, all-out: 16.3 +/- 9.1 cells/mul, P < 0.001), and increased immature reticulocyte fractions; AC133+ cells doubled, suggesting release of angiogenetic precursors. Erythrocyte burst forming units and colony forming units for granulocytes-monocytes and all blood series increased postexercise by 3.4-, 5.5-, and 4.8-fold, respectively (P < 0.01 for all). All-out rowing acutely increased plasma cortisol, neutrophil elastase, flt3-ligand, hepatocyte growth factor, VEGF, and transforming growth factor-beta1, and decreased erythropoietin; K-ligand, stromal-derived factor-1, IL-6, and G-CSF were unchanged. Therefore, all-out exercise is a physiological stimulus for progenitor release in athletes. Release of reticulocytes and proangiogenetic cells and mediators suggests tissue hypoxia as possibly involved in progenitor mobilization. PMID:16020520[PubMed - indexed for MEDLINE]
2005
Settore BIO/09 - Fisiologia
Settore MED/10 - Malattie Dell'Apparato Respiratorio
MORICI G, ZANGLA D, SANTORO A, PELOSI E, PETRUCCI E, GIOIA M, et al. (2005). Supramaximal exercise mobilizes haematopoietic progenitors and reticulocytes in athletes. AMERICAN JOURNAL OF PHYSIOLOGY. REGULATORY, INTEGRATIVE AND COMPARATIVE PHYSIOLOGY, 289(5), R1496-R1503 [10.​1152/​ajpregu.​00338.​2005].
File in questo prodotto:
File Dimensione Formato  
R1496.full.pdf

Solo gestori archvio

Dimensione 341.59 kB
Formato Adobe PDF
341.59 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/24302
Citazioni
  • ???jsp.display-item.citation.pmc??? 18
  • Scopus 97
  • ???jsp.display-item.citation.isi??? 83
social impact