An abelian square is the concatenation of two words that are anagrams of one another. A word of length n can contain at most Θ(n2) distinct factors, and there exist words of length n containing Θ(n2) distinct abelian-square factors, that is, distinct factors that are abelian squares. This motivates us to study infinite words such that the number of distinct abelian-square factors of length n grows quadratically with n. More precisely, we say that an infinite word w is abelian-square-rich if, for every n, every factor of w of length n contains, on average, a number of distinct abelian-square factors that is quadratic in n; and uniformly abelian-square-rich if every factor of w contains a number of distinct abelian-square factors that is proportional to the square of its length. Of course, if a word is uniformly abelian-square-rich, then it is abelian-square-rich, but we show that the converse is not true in general. We prove that the Thue–Morse word is uniformly abelian-square-rich and that the function counting the number of distinct abelian-square factors of length 2n of the Thue–Morse word is 2-regular. As for Sturmian words, we prove that a Sturmian word sα of angle α is uniformly abelian-square-rich if and only if the irrational α has bounded partial quotients, that is, if and only if sα has bounded exponent.

Fici, G., Mignosi, F., Shallit, J. (2017). Abelian-square-rich words. THEORETICAL COMPUTER SCIENCE, 684, 29-42 [10.1016/j.tcs.2017.02.012].

Abelian-square-rich words

FICI, Gabriele;
2017-01-01

Abstract

An abelian square is the concatenation of two words that are anagrams of one another. A word of length n can contain at most Θ(n2) distinct factors, and there exist words of length n containing Θ(n2) distinct abelian-square factors, that is, distinct factors that are abelian squares. This motivates us to study infinite words such that the number of distinct abelian-square factors of length n grows quadratically with n. More precisely, we say that an infinite word w is abelian-square-rich if, for every n, every factor of w of length n contains, on average, a number of distinct abelian-square factors that is quadratic in n; and uniformly abelian-square-rich if every factor of w contains a number of distinct abelian-square factors that is proportional to the square of its length. Of course, if a word is uniformly abelian-square-rich, then it is abelian-square-rich, but we show that the converse is not true in general. We prove that the Thue–Morse word is uniformly abelian-square-rich and that the function counting the number of distinct abelian-square factors of length 2n of the Thue–Morse word is 2-regular. As for Sturmian words, we prove that a Sturmian word sα of angle α is uniformly abelian-square-rich if and only if the irrational α has bounded partial quotients, that is, if and only if sα has bounded exponent.
2017
Fici, G., Mignosi, F., Shallit, J. (2017). Abelian-square-rich words. THEORETICAL COMPUTER SCIENCE, 684, 29-42 [10.1016/j.tcs.2017.02.012].
File in questo prodotto:
File Dimensione Formato  
Abelian-square-rich words.pdf

Solo gestori archvio

Dimensione 536.96 kB
Formato Adobe PDF
536.96 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/238201
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact