A non-compact polyhedron P is Tucker if, for any compact subset K ⊂ P, the fundamental group π 1(P − K) is finitely generated. The main result of this note is that a manifold which is proper homotopy equivalent to a Tucker polyhedron is Tucker. We use Poenaru’s theory of the equivalence relations forced by the singularities of a non-degenerate simplicial map

OTERA DE (2007). On the proper homotopy invariance of the Tucker property. ACTA MATHEMATICA SINICA, 23(3), 571-576 [10.1007/s10114-005-0900-2].

On the proper homotopy invariance of the Tucker property

OTERA, Daniele Ettore
2007-01-01

Abstract

A non-compact polyhedron P is Tucker if, for any compact subset K ⊂ P, the fundamental group π 1(P − K) is finitely generated. The main result of this note is that a manifold which is proper homotopy equivalent to a Tucker polyhedron is Tucker. We use Poenaru’s theory of the equivalence relations forced by the singularities of a non-degenerate simplicial map
2007
OTERA DE (2007). On the proper homotopy invariance of the Tucker property. ACTA MATHEMATICA SINICA, 23(3), 571-576 [10.1007/s10114-005-0900-2].
File in questo prodotto:
File Dimensione Formato  
Otera2007_Article_OnTheProperHomotopyInvarianceO.pdf

Solo gestori archvio

Dimensione 128.08 kB
Formato Adobe PDF
128.08 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/23680
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact